Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental techniques description

The book opens with a chapter on the theory underlying the technique of the chief operations of practical organic chemistry it is considered that a proper understanding of these operations cannot be achieved without a knowledge of the appropriate theoretical principles. Chapter II is devoted to a detailed discussion of experimental technique the inclusion of this subject in one chapter leads to economy of space, par ticularly in the description of advanced preparations. It is not expected that the student will employ even the major proportion of the operations described, but a knowledge of their existence is thought desirable for the advanced student so that he may apply them when occasion demands. [Pg.1193]

The disadvantage of ah initio methods is that they are expensive. These methods often take enormous amounts of computer CPU time, memory, and disk space. The HF method scales as N, where N is the number of basis functions. This means that a calculation twice as big takes 16 times as long (2" ) to complete. Correlated calculations often scale much worse than this. In practice, extremely accurate solutions are only obtainable when the molecule contains a dozen electrons or less. However, results with an accuracy rivaling that of many experimental techniques can be obtained for moderate-size organic molecules. The minimally correlated methods, such as MP2 and GVB, are often used when correlation is important to the description of large molecules. [Pg.28]

It should be noted that the kinetic analysis of this system consisting of five reactions represents the limiting case which can be reliably solved by the current experimental technique, if we wish its kinetic description to be in agreement with the kinetics of single reactions and the corresponding... [Pg.45]

In this chapter, we first present a brief overview of the experimental techniques that we and others have used to study torsional motion in S, and D0 (Section II). These are resonant two-photon ionization (R2PI) for S,-S0 spectroscopy and pulsed-field ionization (commonly known as ZEKE-PFI) for D0-S, spectroscopy. In Section HI, we summarize what is known about sixfold methyl rotor barriers in S0, S, and D0, including a brief description of how the absolute conformational preference can be inferred from spectral intensities. Section IV describes the threefold example of o-cholorotoluene in some detail and summarizes what is known about threefold barriers more generally. The sequence of molecules o-fluorotoluene, o-chlorotoluene, and 2-fluoro-6-chlorotoluene shows the effects of ort/io-fluoro and ortho-chloro substituents on the rotor potential. These are approximately additive in S0, S, and D0. Finally, in Section V, we present our ideas about the underlying causes of these diverse barrier heights and conformational preferences, based on analysis of the optimized geometries and electronic wavefunctions from ab initio calculations. [Pg.159]

It is extremely difficult to generalize with regard to systems of complex reactions. Often it is useful to attempt to simplify the kinetics by using experimental techniques which cause a degeneration of the reaction order by using a large excess of one or more reactants or using stoichiometric ratios of reactants. In many cases, however, even these techniques will not effect a simplification in the reaction kinetics. Then one must often be content with qualitative or semi-quantitative descriptions of the system behavior. [Pg.155]

For many years, investigations on the electronic structure of organic radical cations in general, and of polyenes in particular, were dominated by PE spectroscopy which represented by far the most copious source of data on this subject. Consequently, attention was focussed mainly on those excited states of radical ions which can be formed by direct photoionization. However, promotion of electrons into virtual MOs of radical cations is also possible, but as the corresponding excited states cannot be attained by a one-photon process from the neutral molecule they do not manifest themselves in PE spectra. On the other hand, they can be reached by electronic excitation of the radical cations, provided that the corresponding transitions are allowed by electric-dipole selection rules. As will be shown in Section III.C, the description of such states requires an extension of the simple models used in Section n, but before going into this, we would like to discuss them in a qualitative way and give a brief account of experimental techniques used to study them. [Pg.228]

Equally precise and meticulous as an experimentalist, he devoted time during his days at Pittsburgh to write comprehensive articles on such practical techniques as crystallization, vacuum distillation, and sublimation, which were published in the Weissberger Techniques of Organic Chemistry series. His preoccupation with careful experimental techniques and then-accurate recording in the literature remained with him always. He abhorred vague descriptions of procedures, speculative interpretations not based on... [Pg.423]

Values for the parameters are determined by a least squares fit of experimental data using eq (5) for experiments such as galvanic cells measurements that measure solute activity and thus y/Yref values, and eq (6) for experiments such as vapor pressure measurements that measure solvent activity and thus (f) values. All the original data are used in a single fitting program to determine the best values for the parameters. A detailed description of the evaluation procedure has been illustrated for the system calcium chloride-water (Staples and Nuttall, 1977), and calculations deriving activity data from a variety of experimental technique measurements have also been described. [Pg.540]

In a paper by Albinati and Willis (1982) the application of the Rietveld method in neutron and X-ray powder diffraction was discussed considering the different experimental techniques of obtaining the diffraction patterns. For a detailed description of the method and its applications see a reference publication (Young 1995). See also Jenkins and Snyder (1996). A frequently used calculation program for the... [Pg.63]

In amorphous solids there is a considerable disorder and it is impossible to give a description of their structure comparable to that applicable to crystals. In a crystal indeed the identification of all the atoms in the unit cell, at least in principle, is possible with a precise determination of their coordinates. For a glass, only a statistical description may be obtained to this end different experimental techniques are useful and often complementary to each other. Especially important are the methods based on diffraction experiments only these will be briefly mentioned here. The diffraction pattern of an amorphous alloy does not show sharp diffraction peaks as for crystalline materials but only a few broadened peaks. Much more limited information can thus be extracted and only a statistical description of the structure may be obtained. The so-called radial distribution function is defined as ... [Pg.209]

Adsorption-desorption coefficients are determined by various experimental techniques related to the status of a contaminant (solute or gas) under static or continuous conditions. Solute adsorption-desorption is determined mainly by batch or column equilibration procedures. A comprehensive description of various experimental techniques for determining the kinetics of soil chemical processes, including adsorption-desorption, may be found in the book by Sparks (1989) and in many papers (e.g., Nielsen and Biggar 1961 Bowman 1979 Boyd and King 1984 Peterson et al. 1988 Podoll et al. 1989 Abdul et al. 1990 Brusseau et al. 1990 Hermosin and Camejo 1992 Farrell and Reinhard 1994 Schrap et al. 1994 Petersen et al. 1995). [Pg.95]

A chemical relaxation technique that measures the magnitude and time dependence of fluctuations in the concentrations of reactants. If a system is at thermodynamic equilibrium, individual reactant and product molecules within a volume element will undergo excursions from the homogeneous concentration behavior expected on the basis of exactly matching forward and reverse reaction rates. The magnitudes of such excursions, their frequency of occurrence, and the rates of their dissipation are rich sources of dynamic information on the underlying chemical and physical processes. The experimental techniques and theory used in concentration correlation analysis provide rate constants, molecular transport coefficients, and equilibrium constants. Magde" has provided a particularly lucid description of concentration correlation analysis. See Correlation Function... [Pg.164]

Due to the difficulties in interpretation and the sensitivity of vibrations in the fingerprint and skeletal regions to structural alterations, the application of ROA to stereochemical problems remains limited. However, the recent advances in experimental techniques and theoretical descriptions are promoting increased research activity in ROA. Especially in aqueous solution, where VCD signals are obscured by the solvent and in low frequency regions, in which VCD spectra are not yet available, Raman optical activity remains a promising tool for stereochemical investigations. [Pg.157]

Experimental Evidence We will now discuss the evidence presented by A B in support of their views, of impact initiation described above. After a brief description of their main experimental techniques we will attempt to present experimental data that support each... [Pg.312]

Of the electrokinetic phenomena we have considered, electrophoresis is by far the most important. Until now our discussion of experimental techniques of electrophoresis has been limited to a brief description of microelectrophoresis, which is easily visualized and has provided sufficient background for our considerations to this point. Microelectrophoresis itself is subject to some complications that can be discussed now that we have some background in the general area of electrical transport phenomena. In addition, the methods of moving-boundary electrophoresis and zone electrophoresis are sufficiently important to warrant at least brief summaries. [Pg.559]

Each of the five experimental techniques has some unique features that make it competitive for a certain range of parameters (reactant concentrations, temperature, pressure, time, etc.). The development of improved diagnostic tools has enhanced significantly the accuracy and range of species concentrations that can be determined. Thereby the value of the data for model development and validation has been increased. However, each of the experimental techniques also has some inherent limitations these are important to be aware of when choosing data for kinetic interpretation. Below is a brief description of each technique. [Pg.571]

The highly excited and reactive dynamics, the details of which have been made accessible by recently developed experimental techniques, are characterized by transitions between classically regular and chaotic regimes. Now molecular spectroscopy has traditionally relied on perturbation expansions to characterize molecular energy spectra, but such expansions may not be valid if the corresponding classical dynamics turns out to be chaotic. This leads us to a reconsideration of such perturbation techniques and provides the starting point for our discussion. From there, we will proceed to discuss the Gutzwiller trace formula, which provides a semiclassical description of classically chaotic systems. [Pg.496]


See other pages where Experimental techniques description is mentioned: [Pg.412]    [Pg.430]    [Pg.245]    [Pg.283]    [Pg.17]    [Pg.757]    [Pg.267]    [Pg.37]    [Pg.182]    [Pg.79]    [Pg.16]    [Pg.7]    [Pg.23]    [Pg.204]    [Pg.71]    [Pg.246]    [Pg.261]    [Pg.4]    [Pg.4]    [Pg.35]    [Pg.56]    [Pg.53]    [Pg.42]    [Pg.165]    [Pg.126]    [Pg.403]    [Pg.403]    [Pg.450]    [Pg.265]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Description of experimental technique

Experimental description

Experimental precipitation techniques description

© 2024 chempedia.info