Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excel equilibria

The method for studying intennediate exchange in NMR is to obtain an excellent equilibrium spectmm of tlie system as a fiinction of temperature. Then the theoretical apparatus developed above can be used to simulate and to fit the experimental data, in order to obtain the rate data. [Pg.2105]

The reaction of Pt(C03)(dppp)] with a modest excess of vicinal diols in CH2C12 solution affords the corresponding [Pt(a,/3-diolato)(dppp)] species under equilibrium conditions, a reaction that is readily reversed by the addition of dry ice to the product. The reaction with triols such as glycerol and alditol carbohydrates also affords the corresponding diolato species, with the reaction exhibiting excellent equilibrium regioselectivities for a number of isomers, of which the 7, 6-threo diols are the most favored. [Pg.713]

Smith [113] studied the adsorption of n-pentane on mercury, determining both the surface tension change and the ellipsometric film thickness as a function of the equilibrium pentane pressure. F could then be calculated from the Gibbs equation in the form of Eq. ni-106, and from t. The agreement was excellent. Ellipsometry has also been used to determine the surface compositions of solutions [114,115], as well polymer adsorption at the solution-air interface [116]. [Pg.78]

The most conunon choice for a reference system is one with hard cores (e.g. hard spheres or hard spheroidal particles) whose equilibrium properties are necessarily independent of temperature. Although exact results are lacking in tluee dimensions, excellent approximations for the free energy and pair correlation fiinctions of hard spheres are now available to make the calculations feasible. [Pg.503]

The treatment of equilibrium solvation effects in condensed-phase kmetics on the basis of TST has a long history and the literature on this topic is extensive. As the basic ideas can be found m most physical chemistry textbooks and excellent reviews and monographs on more advanced aspects are available (see, for example, the recent review article by Tnihlar et al [6] and references therein), the following presentation will be brief and far from providing a complete picture. [Pg.832]

The equilibrium constants obtained using the metal-ion induced shift in the UV-vis absorption spectrum are in excellent agreement with the results of the Lineweaver-Burke analysis of the rate constants at different catalyst concentrations. For the copper(II)ion catalysed reaction of 2.4a with 2.5 the latter method gives a value for of 432 versus 425 using the spectroscopic method. [Pg.58]

A tabulation of the partial pressures of sulfuric acid, water, and sulfur trioxide for sulfuric acid solutions can be found in Reference 80 from data reported in Reference 81. Figure 13 is a plot of total vapor pressure for 0—100% H2SO4 vs temperature. References 81 and 82 present thermodynamic modeling studies for vapor-phase chemical equilibrium and liquid-phase enthalpy concentration behavior for the sulfuric acid—water system. Vapor pressure, enthalpy, and dew poiat data are iacluded. An excellent study of vapor—liquid equilibrium data are available (79). [Pg.180]

When chemical equilibrium is achieved qiiickly throughout the liquid phase (or can be assumed to exist), the problem becomes one of properly defining the physical and chemical equilibria for the system. It sometimes is possible to design a plate-type absorber by assuming chemical-equilibrium relationships in conjunction with a stage efficiency factor as is done in distillation calculations. Rivas and Prausnitz [Am. Tn.st. Chem. Eng. J., 25, 975 (1979)] have presented an excellent discussion and example of the correct procedures to be followed for systems involving chemical equihbria. [Pg.1364]

There are basically two different computer simulation techniques known as molecular dynamics (MD) and Monte Carlo (MC) simulation. In MD molecular trajectories are computed by solving an equation of motion for equilibrium or nonequilibrium situations. Since the MD time scale is a physical one, this method permits investigations of time-dependent phenomena like, for example, transport processes [25,61-63]. In MC, on the other hand, trajectories are generated by a (biased) random walk in configuration space and, therefore, do not per se permit investigations of processes on a physical time scale (with the dynamics of spin lattices as an exception [64]). However, MC has the advantage that it can easily be applied to virtually all statistical-physical ensembles, which is of particular interest in the context of this chapter. On account of limitations of space and because excellent texts exist for the MD method [25,61-63,65], the present discussion will be restricted to the MC technique with particular emphasis on mixed stress-strain ensembles. [Pg.22]

Van Nuys [75] gives excellent thermodynamic data for HCl. Figure 9-87 gives the equilibrium for the 100% HCl gas feed in an adiabatic tower, and Table 9-45 summarizes performance for two concentrations of feed gas. From the data it can be seen that it requires fewer theoretical plates to make 32% acid from 10% feed gas than from 100% gas and at the same time yield a vent containing only 0.01 weight% HCl. [Pg.370]

Pseudomorphism received methodical study from about 1905. A micro-section taken across the interface between a substrate and an electrodeposit shows the grain boundaries of the former continue across the interface into the deposit (Fig. 12.5). As grain boundaries are internal faces of metal crystals, when they continue into the deposit the latter is displaying the form of the substrate. Hothersall s 1935 paper contains numerous excellent illustrations with substrates and deposits chosen from six different metals, crystallising in different lattice systems and with different equilibrium spacing. Grain boundary continuation and hence pseudomorphism is evident despite the differences. [Pg.355]

The present Section, which provides an outline of selected relevant topics in electrochemistry, is intended primarily as an introduction to aqueous corrosion for those readers whose basic training has not involved a study of electrochemistry. The scope of electrochemistry is enormous and cannot be treated adequately here, but there are now a number of excellent books on the subject, and it is hoped that this outline will serve to stimulate further study. The topics selected are as follows a) the nature of the electrified interface between the metal and the solution, (b) adsorption, (c) transfer of charge across the interface under equilibrium and non-equilibrium conditions, d) overpotential and the rate of an electrode reaction and (e) the hydrogen evolution reaction and hydrogen absorption by ferrous alloys. For reasons of space a number of important topics, such as the electrochemistry of electrolyte solutions, have been omitted. [Pg.1165]

In some instances, the azaquadricyclane is nonisolable and photolysis of the pyrrole-dimethyl acetylenedicarboxylate cycloadduct or of analogous cycloadducts gives directly the 1 //-azepine. For example, 3.6-dichloro-l-tosyl-l//-azepine (10) is produced in excellent yield by photolysis of the [4 + 2] cycloadduct 9.22 Interestingly, dichloroazepine 10 is found (by H NMR spectroscopy) to be in equilibrium with a small amount (1 % at — 67 C) of its bicyclic valence tautomer 11. [Pg.134]

The method is very useful for the synthesis of physiologically interesting a-mcthylamino acids, e.g., methyl dopa from the 3,4-dimethoxybenzyl derivative. The excellent stereoselection achieved in the process, however, is caused by the preferential crystallization of one pure diastereomerfrom the equilibrium mixture formed in the reversible Strecker reaction. Thus, the pure diastcrcomers with benzyl substituents, dissolved in chloroform or acetonitrile, give equilibrium mixtures of both diastereomers in a ratio of about 7 347. This effect has also been found for other s-methylamino nitriles of quite different structure49. If the amino nitrile (R1 = Bn) is synthesized in acetonitrile solution, the diastereomers do not crystallize while immediate hydrolysis indicates a ratio of the diastereomeric amino nitriles (S)I(R) of 86 1447. [Pg.790]

The value of k E was obtained by following the change in optical rotation (a). Plots expressing the difference between x at various times t and its value at equilibrium of ln(a, - ae) against time were made they proved to be linear with a slope of ftEE[Mn]7-. This gave an experimental value Ee = 30Lmor s, in excellent agreement with that from the Marcus correlations. [Pg.248]

Cationic polymerization of cyclic acetals generally involves equilibrium between monomer and polymer. The equilibrium nature of the cationic polymerization of 2 was ascertained by depolymerization experiments Methylene chloride solutions of the polymer ([P]0 = 1.76 and 1.71 base-mol/1) containing a catalytic amount of boron trifluoride etherate were allowed to stand for several days at 0 °C to give 2 which was in equilibrium with its polymer. The equilibrium concentrations ([M]e = 0.47 and 0.46 mol/1) were in excellent agreement with that found in the polymerization experiments under the same conditions. The thermodynamic parameters for the polymerization of 1 were evaluated from the temperature dependence of the equilibrium monomer concentrations between -20 and 30 °C. [Pg.54]

An excellent overview of the problems that students experience in learning the notions underlying chemical equilibrium is available (van Driel Graber, 2002). Research shows that conceptual problems arose when students, who had been introduced to chemical reactions through examples that evidently go to completion , first met examples of incomplete reactions . In this situation, they... [Pg.292]

B was also obtained from equilibrium-swelling data of selected block copolymers the results showed excellent agreement with the other methods (Equations 7.1 and 7.2)7... [Pg.203]


See other pages where Excel equilibria is mentioned: [Pg.39]    [Pg.186]    [Pg.929]    [Pg.1564]    [Pg.1350]    [Pg.2186]    [Pg.47]    [Pg.144]    [Pg.320]    [Pg.31]    [Pg.680]    [Pg.914]    [Pg.96]    [Pg.532]    [Pg.31]    [Pg.225]    [Pg.12]    [Pg.533]    [Pg.579]    [Pg.58]    [Pg.349]    [Pg.167]    [Pg.39]    [Pg.17]    [Pg.87]    [Pg.312]    [Pg.53]    [Pg.234]    [Pg.233]    [Pg.340]    [Pg.153]    [Pg.296]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Equilibria in Excel

Example of Process Simulation With Excel Including Chemical Reaction Equilibrium

Example of Process Simulation With Excel Including Phase Equilibrium

Excel

Excel worksheets equilibrium curve preparation

Excel worksheets intercept (heatup path-equilibrium curve

Excellence

Vapor-liquid equilibrium with Excel

© 2024 chempedia.info