Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Examples temperature controller

These works only discuss the principles of equipment used for various enological operations and their effect on product quahty. For example, temperature control systems, destemmers, crushers and presses as well as filters, inverse osmosis machines and ion exchangers are not described in detail. Bottling is not addressed at all. An in-depth description of enological equipment would merit a detailed work dedicated to the subject. [Pg.505]

A traditional method for such reductions involves the use of a reducing metal such as zinc or tin in acidic solution. Examples are the procedures for preparing l,2,3,4-tetrahydrocarbazole[l] or ethyl 2,3-dihydroindole-2-carbox-ylate[2] (Entry 3, Table 15.1), Reduction can also be carried out with acid-stable hydride donors such as acetoxyborane[4] or NaBHjCN in TFA[5] or HOAc[6]. Borane is an effective reductant of the indole ring when it can complex with a dialkylamino substituent in such a way that it can be delivered intramolecularly[7]. Both NaBH -HOAc and NaBHjCN-HOAc can lead to N-ethylation as well as reduction[8]. This reaction can be prevented by the use of NaBHjCN with temperature control. At 20"C only reduction occurs, but if the temperature is raised to 50°C N-ethylation occurs[9]. Silanes cun also be used as hydride donors under acidic conditions[10]. Even indoles with EW substituents, such as ethyl indole-2-carboxylate, can be reduced[ll,l2]. [Pg.145]

These systems, commercially known as Tberminol VP or Dowtherm A, differ from steam in some key areas which can result in operating problems unless handled properly in design (14). The low pressure—high temperature operation means that the AT/AP ratio at saturation is quite high for example, at 315°C the ratio is 25 times that of steam. This means that a pressure drop that would be nominal in a steam system (10 kPa (0.1 atm)), can not be tolerated if precise temperature control is needed. [Pg.229]

Apphcations requiring accurate temperature control are generally limited to electric tracing. For example chocolate lines cannot be exposed to steam temperatures or the product will degrade and if caustic soda is heated ove 150°F it becomes extremely corrosive to carbon steel pipes. [Pg.1013]

Avoid the use of instrumentation that may have low first cost, but is very expensive to operate or maintain. Blind controllers, for example, are completely unsatisfactory for most applications. The author has seen examples of temperature controllers set at the factory, but with no method of readout or calibration. These almost always require retrofitting of additional instrumentation later. Internal level floats on process vessels that require plant... [Pg.292]

The copolymers have been used in the manufacture of extruded pipe, moulded fittings and for other items of chemical plant. They are, however, rarely used in Europe for this purpose because of cost and the low maximum service temperature. Processing conditions are adjusted to give a high amount of crystallinity, for example by the use of moulds at about 90°C. Heated parts of injection cylinders and extruder barrels which come into contact with the molten polymer should be made of special materials which do not cause decomposition of the polymer. Iron, steel and copper must be avoided. The danger of thermal decomposition may be reduced by streamlining the interior of the cylinder or barrel to avoid dead-spots and by careful temperature control. Steam heating is frequently employed. [Pg.468]

The reactor in Fig. 5 operates as follows. A feed solution containing a given concentration of pollutant is pumped to the adsorbent module at a fixed volumetric flow rate. The module is kept isothermal by a temperature control unit, such as a surrounding water bath. Finally, the concentration of the outlet solution is measured as a function of time from when the feed was introduced to the adsorbent module. These measurements are often plotted as breakthrough curves. Example breakthrough curves for an aqueous acetone solution flowing... [Pg.107]

Examples of control systems Room temperature control system... [Pg.6]

Example 4.6.2 Temperature control system (See also Appendix 1, examp462.m) The general form of a temperature control system is shown in Figure 1.6 with the corresponding block diagram given in Figure 1.7. [Pg.97]

Case study example 4.6.2 (Temperature Control) %Use of feedback... [Pg.387]

Figure 3.7 shows some early examples of this type of analysis (39), illustrating the GC determination of the stereoisomeric composition of lactones in (a) a fruit drink (where the ratio is racemic, and the lactone is added artificially) and (b) a yoghurt, where the non-racemic ratio indicates no adulteration. Technically, this separation was enabled on a short 10 m slightly polar primary column coupled to a chiral selective cyclodextrin secondary column. Both columns were independently temperature controlled and the transfer cut performed by using a Deans switch, with a backflush of the primary column following the heart-cut. [Pg.65]

The oldest technology involved in the elastomer blending and vulcanization process is essentially a temperature controlled two roll mill as well as internal mixers followed by an optimum degree of crosslinking in autoclave molds (compression, injection, etc.) in a batch process or in a continuous process such as continuously heated tube or radiated tubes. A few examples of laboratory scale preparation of special purpose elastomeric blends is cited here. [Pg.465]

A perfect temperature-controlled heat-transfer surface is difficult to achieve, but it is closely simulated in practice by using a control fluid on one side of, for example, a metal tube. The tube wall should be thin and, ideally, the heat-transfer resistance comparatively large for the other fluid on the working side of the tube the latter surface is then effectively temperature-controlled and responds only to changes in the control fluid. [Pg.210]

It follows that, at least for SEC, column temperature control can be important. An example of a commercially available column oven is shown in figure 17. The available temperature range varies a little from instrument to instrument but the model shown above has an operational range from 10°C to 99°C. One of the problems associated with the temperature control of ovens is the high thermal capacity of... [Pg.147]

Why are the CSTRs worth considering at all They are more expensive per unit volume and less efficient as chemical reactors (except for autocatalysis). In fact, CSTRs are useful for some multiphase reactions, but that is not the situation here. Their potential justification in this example is temperature control. BoiUng (autorefrigerated) reactors can be kept precisely at the desired temperature. The shell-and-tube reactors cost less but offer less effective temperature control. Adiabatic reactors have no control at all, except that can be set. [Pg.190]

Solution There are several theoretical ways of stabilizing the reactor, but temperature control is the normal choice. The reactor in Example 5.7 was adiabatic. Some form of heat exchange must be added. Possibilities are to control the inlet temperature, to control the pressure in the vapor space thereby allowing reflux of styrene monomer at the desired temperature, or to control the jacket or external heat exchanger temperature. The following example regulates the jacket temperature. Refer to Example 5.7. The component balance on styrene is unchanged from Equation (5.29) ... [Pg.528]

Suppose the reactor in Example 14.8 remains in batch mode after the fast-fill-and-hold startup. Will the temperature control system still work A preliminary answer based on the approximate kinetics of Example 14.7 is sufficient, but see the next problem. [Pg.536]


See other pages where Examples temperature controller is mentioned: [Pg.257]    [Pg.2968]    [Pg.239]    [Pg.257]    [Pg.2968]    [Pg.239]    [Pg.126]    [Pg.72]    [Pg.75]    [Pg.528]    [Pg.194]    [Pg.389]    [Pg.464]    [Pg.152]    [Pg.161]    [Pg.459]    [Pg.509]    [Pg.82]    [Pg.111]    [Pg.77]    [Pg.226]    [Pg.327]    [Pg.130]    [Pg.439]    [Pg.463]    [Pg.629]    [Pg.218]    [Pg.299]    [Pg.470]    [Pg.696]    [Pg.406]    [Pg.481]    [Pg.208]    [Pg.210]    [Pg.91]    [Pg.123]    [Pg.175]   
See also in sourсe #XX -- [ Pg.48 , Pg.52 , Pg.54 , Pg.144 , Pg.164 ]




SEARCH



Temperature control

Temperature control controllers

Temperature controller

Temperature-controlled

© 2024 chempedia.info