Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene vinyl acetate temperature

This type of adhesive is generally useful in the temperature range where the material is either leathery or mbbery, ie, between the glass-transition temperature and the melt temperature. Hot-melt adhesives are based on thermoplastic polymers that may be compounded or uncompounded ethylene—vinyl acetate copolymers, paraffin waxes, polypropylene, phenoxy resins, styrene—butadiene copolymers, ethylene—ethyl acrylate copolymers, and low, and low density polypropylene are used in the compounded state polyesters, polyamides, and polyurethanes are used in the mosdy uncompounded state. [Pg.235]

Ethylene vinyl acetate copolymer (EVA) forms a soft, tacky film with good water-vapor barrier but very poor gas-barrier properties. It is widely used as a low temperature initiation and broad-range, heat-sealing medium. The film also serves for lamination to other substrates for heat-sealing purposes. [Pg.452]

Plasticizers. Monomeric (mol wt 250—450) plasticizers (qv) are predominantiy phthalate, adipate, sebacate, phosphate, or trimeUitate esters. Organic phthalate esters like dioctyl phthalate (DOP) are by far the most common plasticizers in flexible PVC. Phthalates are good general-purpose plasticizers which impart good physical and low temperature properties but lack permanence in hot or extractive service conditions and are therefore sometimes called migratory plasticizers. Polymeric plasticizers (mol wt up to 5000 or more) offer an improvement in nonmigratory permanence at a sacrifice in cost, low temperature properties, and processibiHty examples are ethylene vinyl acetate or nitrile polymers. [Pg.327]

Rosin, modified rosins, and derivatives are used in hot-melt adhesives. They are based primarily on ethylene—vinyl acetate copolymers. The rosin derivative is used in approximately a 1 1 1 concentration with the polymer and a wax. The resin provides specific adhesion to the substrates and reduces the viscosity at elevated temperatures, allowing the adhesive to be appHed as a molten material. [Pg.140]

Materials are also blended with VDC copolymers to improve toughness (211—214). VinyHdene chloride copolymer blended with ethylene—vinyl acetate copolymers improves toughness and lowers heat-seal temperatures (215,216). Adhesion of a VDC copolymer coating to polyester can be achieved by blending the copolymer with a linear polyester resin (217). [Pg.443]

Whilst vinyl acetate is reluctant to copolymerise it is in fact usually used today in copolymers. Two of particular interest to the plastics industry are ethylene-vinyl acetate (Chapter 11) and vinyl chloride-vinyl acetate copolymers (Chapter 12). In surface coatings internal plasticisation to bring the Tg to below ambient temperatures and thus facilitate film forming is achieved by the use of ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate and dialkyl maleates and fumarates. [Pg.397]

If polypropylene is too hard for the purpose envisaged, then the user should consider, progressively, polyethylene, ethylene-vinyl acetate and plasticised PVC. If more rubberiness is required, then a vulcanising rubber such as natural rubber or SBR or a thermoplastic polyolefin elastomer may be considered. If the material requires to be rubbery and oil and/or heat resistant, vulcanising rubbers such as the polychloroprenes, nitrile rubbers, acrylic rubbers or hydrin rubbers or a thermoplastic elastomer such as a thermoplastic polyester elastomer, thermoplastic polyurethane elastomer or thermoplastic polyamide elastomer may be considered. Where it is important that the elastomer remain rubbery at very low temperatures, then NR, SBR, BR or TPO rubbers may be considered where oil resistance is not a consideration. If, however, oil resistance is important, a polypropylene oxide or hydrin rubber may be preferred. Where a wide temperature service range is paramount, a silicone rubber may be indicated. The selection of rubbery materials has been dealt with by the author elsewhere. ... [Pg.896]

Other polyolefins A variety of other crystalline polyolefins are available such as polybutene-1 (improved creep resistance over polyethylene), poly-4-methyl pentene-1 (excellent temperature deformation resistance) and ethylene-vinyl acetate (greater flexibility). [Pg.933]

Ethylene-vinyl acetate EVAs (in the polyolefin family) have exceptional barrier properties, good clarity and gloss, stress-crack resistance, low temperature toughness/retains flexibility, adhesion, resistance to UV radiation, etc. They have low resistance to heat and solvents. [Pg.427]

FIGURE 4.6 Variation of storage modulus against temperature for ethylene-vinyl acetate (EVA) nanocomposites having different loadings of carbon nanotube (CNT) and ANT. (From George, J.J., Sengupta, R., and Bhowmick, A.K., J. Nanosci. Nanotechnol., 8, 1, 2007. Courtesy of American Scientific Publishers.)... [Pg.93]

H., High-temperature coupling of high-speed GPC with continued viscome-try. II. Ethylene-vinyl acetate copolymers, /. Appl. Polym. Sci., 29, 1569, 1984. [Pg.366]

Table 4.16 Ethylene-vinyl acetate copolymers examples of chemical behaviour at room temperature... Table 4.16 Ethylene-vinyl acetate copolymers examples of chemical behaviour at room temperature...
The residence time is typically in the range of 15 - 60 s. The temperature and pressure are a little lower then in a tubular reactor. Pressures are in the range of 130 - 220 MPa, and the temperatures mostly do not exceed 260°C. When ethylene-vinyl acetate resins are produced, single autoclaves are run at temperatures which are 30 - 50°C lower then in the production of homopolyethylene. [Pg.251]

In the wall thickness fluctuations up to 5 % may occur. As a result of the uneven temperature in the molten polymer during rotation, and also by the not always exactly reproducible rate of cooling, deviations in the dimensions of the finished product may amount to 5 %. Requirements are, that the materials can be molten completely, that the melt is sufficiently low-viscous, and that the molten polymer does not degrade too rapidly. Besides plasticised PVC, HDPE and LDPE are often used, as well as copolymers of PE such as EVA (ethylene - vinyl acetate copolymerj.Because the shear stresses in this process are extremely low, a narrow molar mass distribution is to be recommended, as discussed in 5.4. Cycle times vary between 3 and 40 minutes, dependent on the wall thickness. Cycle times can be reduced considerably by using machines with multiple moulds, since the cycle time... [Pg.200]

At room temperature, PE is a semi-crystalline plastomer (a plastic which on stretching shows elongation like an elastomer), but on heating crystallites melt and the polymer passes through an elastomeric phase. Similarly, by hindering the crystallisation of PE (that is, by incorporating new chain elements), amorphous curable rubbery materials like ethylene propylene copolymer (EPM), ethylene propylene diene terpolymer (EPDM), ethylene-vinyl acetate copolymer (EVA), chlorinated polyethylene (CM), and chlorosulphonated polyethylene (CSM) can be prepared. [Pg.169]

Internal plasticizers are synthesized by copolymerization of suitable monomers. Polymeric non-extractable plasticizers, mostly copolymers having substantially lower glass transition temperatures due to the presence of plasticizing ( soft ) segments such as poly(ethylene-co-vinyl acetate) with approximately 45 % vinylacetate content, ethylene-vinyl acetate-carbon monooxide terpolymer, or chlorinated PE, are available for rather special applications in medicinal articles (Meier, 1990). In this case, the performance of the internally plasticized polymers is the principal advantage. However, copolymerization may account for worse mechanical properties. A combination with external plasticizers may provide an optimal balance of properties. For example, food contact products made from poly(vinylidene chloride) should have at most a citrate or sebacate ester based plasticizers content of 5 % and at most 10 % polymeric plasticizers. [Pg.54]

Instruction B. A solution of an ethylene-vinyl acetate copolymer is prepared in a stirrer autoclave in vinyl chloride (vinylidene chloride) while adding azodiisobutyronitrile dissolution takes place at 25° to 30°C. for four hours. A 1% methyl cellulose solution is introduced into the autoclave under pressure, the content is stirred vigorously (400 r.p.m.) at 25 °C. for two hours, and polymerization is effected by temperature increase at the same speed of agitation. After the polymerization is complete, the bead polymer is isolated, washed with large amounts of water, and dried in vacuo at 50°C. [Pg.503]

The compatibility of blends of poly (vinyl chloride) (PVC) and a terpolymer (TP) of ethylene, vinyl acetate, and carbon monoxide was investigated by dynamic mechanical, dielectric, and calorimetric studies. Each technique showed a single glass transition and that transition temperature, as defined by the initial rise in E" at 110 Hz, c" at 100 Hz, and Cp at 20°C/min, agreed to within 5°C. PVC acted as a polymeric diluent which lowered the crystallization temperature, Tc, of the terpolymer such that Tc decreased with increasing PVC content while Tg increased. In this manner, terpolymer crystallization is inhibited in blends whose value of (Tc — Tg) was negative. Thus, all blends which contained 60% or more PVC showed little or no crystallinity unless solvent was added. [Pg.405]


See other pages where Ethylene vinyl acetate temperature is mentioned: [Pg.355]    [Pg.150]    [Pg.464]    [Pg.489]    [Pg.136]    [Pg.532]    [Pg.134]    [Pg.276]    [Pg.360]    [Pg.717]    [Pg.90]    [Pg.94]    [Pg.228]    [Pg.192]    [Pg.215]    [Pg.44]    [Pg.530]    [Pg.166]    [Pg.150]    [Pg.590]    [Pg.52]    [Pg.89]    [Pg.428]    [Pg.464]    [Pg.503]    [Pg.321]    [Pg.271]    [Pg.50]    [Pg.100]    [Pg.13]   
See also in sourсe #XX -- [ Pg.87 , Pg.90 ]




SEARCH



Ethylene acetals

Ethylene-vinyl acetate

Ethylene-vinyl acetate copolymers examples of chemical behaviour at room temperature

Melting temperature ethylene-vinyl acetate

Vinyl ethylene

© 2024 chempedia.info