Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene reaction with hydroxyl

Diols that bear two hydroxyl groups m a 1 2 or 1 3 relationship to each other yield cyclic acetals on reaction with either aldehydes or ketones The five membered cyclic acetals derived from ethylene glycol (12 ethanediol) are the most commonly encoun tered examples Often the position of equilibrium is made more favorable by removing the water formed m the reaction by azeotropic distillation with benzene or toluene... [Pg.722]

A series of sorbitol-based nonionic surfactants are used ia foods as water-ia-oil emulsifiers and defoamers. They are produced by reaction of fatty acids with sorbitol. During reaction, cycHc dehydration as well as esterification (primary hydroxyl group) occurs so that the hydrophilic portion is not only sorbitol but also its mono- and dianhydride. The product known as sorbitan monostearate [1338-41 -6] for example, is a mixture of partial stearic and palmitic acid esters (sorbitan monopalmitate [26266-57-9]) of sorbitol, 1,5-anhydro-D-glucitol [154-58-8] 1,4-sorbitan [27299-12-3] and isosorbide [652-67-5]. Sorbitan esters, such as the foregoing and also sorbitan monolaurate [1338-39-2] and sorbitan monooleate [1338-43-8], can be further modified by reaction with ethylene oxide to produce ethoxylated sorbitan esters, also nonionic detergents FDA approved for food use. [Pg.480]

Apart from poly(ethylene glycol), other hydroxyl-terminated polymers and low-molecular weight compounds were condensed with ACPC. An interesting example is the reaction of ACPC with preformed poly(bu-tadiene) possessing terminal OH groups [26]. The reaction was carried out in chloroform solution and (CH3CH2)3N was used as a catalyst. MAIs based on butadiene thus obtained were used for the thermally induced block copolymerization with styrene [26] and dimethyl itaconate [27]. [Pg.738]

As previously discussed, solvents that dissolve cellulose by derivatization may be employed for further functionahzation, e.g., esterification. Thus, cellulose has been dissolved in paraformaldehyde/DMSO and esterified, e.g., by acetic, butyric, and phthalic anhydride, as well as by unsaturated methacrylic and maleic anhydride, in the presence of pyridine, or an acetate catalyst. DS values from 0.2 to 2.0 were obtained, being higher, 2.5 for cellulose acetate. H and NMR spectroscopy have indicated that the hydroxyl group of the methy-lol chains are preferably esterified with the anhydrides. Treatment of celliflose with this solvent system, at 90 °C, with methylene diacetate or ethylene diacetate, in the presence of potassium acetate, led to cellulose acetate with a DS of 1.5. Interestingly, the reaction with acetyl chloride or activated acid is less convenient DMAc or DMF can be substituted for DMSO [215-219]. In another set of experiments, polymer with high o -celliflose content was esterified with trimethylacetic anhydride, 1,2,4-benzenetricarboylic anhydride, trimellitic anhydride, phthalic anhydride, and a pyridine catalyst. The esters were isolated after 8h of reaction at 80-100°C, or Ih at room temperature (trimellitic anhydride). These are versatile compounds with interesting elastomeric and thermoplastic properties, and can be cast as films and membranes [220]. [Pg.138]

Ethylene oxide polymerization may be initiated similarly by substances (alcohols, amines, mercaptans) capable of generating a hydroxyl group through reaction with the monomer. In the presence of strongly acidic or basic catalysts, successive addition of ethylene oxide molecules proceeds rapidly in the following manner ... [Pg.59]

Telechelic polymers, containing one or more end groups with the capacity to react with other molecules, are useful for synthesizing block and other copolymers [Fontanille, 1989 Hsieh and Quirk, 1996 Nuyken and Pask, 1989 Pantazis et al., 2003 Patil et al., 1998 Quirk et al., 1989, 1996 Rempp et al., 1988]. Living anionic polymers can be terminated with a variety of electrophilic reagents to yield telechelic polymers. For example, reaction with carbon dioxide, ethylene oxide, and allyl bromide yield polymers terminated with carboxyl, hydroxyl, and allyl groups, respectively. Functionalization with hydroxyl or carboxyl groups can also be achieved by reaction with a lactone or anhydride, respectively. Polymers with amine end... [Pg.439]

Chemical methods used for the determination of hydroxyl groups or alcoholic constituents in polymers are based on acetylation [16-18], phthalation [18], and reaction with phenyl isocyanate [18,19] or, when two adjacent hydroxy groups are present in the polymers, by reaction with potassium periodate [9,17]. Alcoholic hydroxyl groups may be found in the following polymers (1) poly(ethylene terephthalate) (PET) [20], (2) poly(methyl acrylate), [21], (3) poly(methyl methacrylate) [21], and (4) polyhydric alcohols in hydrolysates of poly(ester) resins [22]. [Pg.165]

Acetic acid is an important industrial chemical. The reaction of acetic acid with hydroxyl-containing compounds, especially alcohols, results in the formation of acetate esters. The largest use of acetic acid is in the production ofvinyl acetate (Figure 1.1). Vinyl acetate can be produced through the reaction of acetylene and acetic acid. It is also produced from ethylene and acetic acid. Vinyl acetate is polymerized into polyvinyl acetate (PVA), which is used in the production of fibers, films, adhesives, and latex paints. [Pg.2]

The production of ethylene from methional (3-thiomethylpropanal) was induced by the oxidation of xanthine by dioxygen catalysed by xanthine oxidase The second-order rate constant for the reaction of hydroxyl radicals with methional was estimated by pulse radiolysis to amount to 8.2 x lO s while the superoxide anion reacted more slowly The short lag period of the ethylene production induced by the oxidation of xanthine could be overcome by the addition of small amounts of hydrogen peroxide. The reaction was inhibited by SOD or by catalase, and by scavengers of hydroxyl radicals, so that the Haber-Weiss reaction was implicated... [Pg.6]

In comparing the activation energies for reactions of hydroxyl with ethane, ethylene, and acetylene it may be concluded that a similar reaction occurs in all three cases, namely, H atom abstraction. The activation energy increases from ethane to acetylene depending upon the C-H bond energy. [Pg.59]


See other pages where Ethylene reaction with hydroxyl is mentioned: [Pg.38]    [Pg.239]    [Pg.245]    [Pg.347]    [Pg.377]    [Pg.3]    [Pg.746]    [Pg.234]    [Pg.106]    [Pg.512]    [Pg.178]    [Pg.24]    [Pg.24]    [Pg.94]    [Pg.856]    [Pg.27]    [Pg.353]    [Pg.693]    [Pg.220]    [Pg.103]    [Pg.20]    [Pg.250]    [Pg.37]    [Pg.76]    [Pg.78]    [Pg.19]    [Pg.62]    [Pg.1052]    [Pg.396]    [Pg.131]    [Pg.37]    [Pg.180]    [Pg.86]    [Pg.245]    [Pg.215]    [Pg.458]    [Pg.171]   


SEARCH



Ethylene reaction with

Ethylene reactions

Hydroxyl, reactions

Hydroxylation reaction

© 2024 chempedia.info