Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene polymerization copolymerization with

The critical conditions for runaway and decomposition during polymerization were evaluated from tests at 5 - 230 MPa and 275 - 450°C. The tests were performed in an autoclave of 200 ml capacity. Besides the homopolymerization of ethylene its copolymerization with different co-monomers was studied. [Pg.423]

In the polymerization of ethylene by (Tr-CjHsljTiClj/AlMejCl [111] and of butadiene by Co(acac)3/AlEt2Cl/H2 0 [87] there is evidence for bimolecular termination. The conclusions on ethylene polymerization have been questioned, however, and it has been proposed that intramolecular decomposition of the catalyst complex occurs via ionic intermediates [91], Smith and Zelmer [275] have examined several catalyst systems for ethylene polymerization and with the assumption that the rate at any time is proportional to the active site concentration ([C ]), second order catalyst decay was deduced, since 1 — [Cf] /[Cf] was linear with time. This evidence, of course, does not distinguish between chemical deactivation and physical occlusion of sites. In conjugated diene polymerization by Group VIII metal catalysts -the unsaturated polymer chain stabilizes the active centre and the copolymerization of a monoolefin which converts the growing chain from a tt to a a bonded structure is followed by a catalyst decomposition, with a reduction in rate and polymer molecular weight [88]. [Pg.151]

Many monomers have been copolymerized with ethylene by a variety of polymerization methods. When ethylene is copolymerized with other olefins, the resultant hydrocarbon polymers have reduced regularity and lower density, lower softening point, and lower brittle point. [Pg.235]

In our studies [23], ethylene was copolymerized with vinyl-Si(CH3)3 using Et (lnd)2ZrCl2/MAO catalyst, and the influence of the 2,1-insertion in the polymerization performance was seen in the weak comonomer uptake, low molar mass, and... [Pg.219]

Uses. Besides polymerizing TFE to various types of high PTEE homopolymer, TEE is copolymerized with hexafluoropropylene (29), ethylene (30), perfluorinated ether (31), isobutylene (32), propylene (33), and in some cases it is used as a termonomer (34). It is used to prepare low molecular weight polyfluorocarbons (35) and carbonyl fluoride (36), as well as to form PTEE m situ on metal surfaces (37). Hexafluoropropylene [116-15-4] (38,39), perfluorinated ethers, and other oligomers are prepared from TEE. [Pg.349]

Tetrafluoroethylene of purity suitable for granular or dispersion polymerizations is acceptable for copolymerization with ethylene. Polymerization-grade ethylene is suitable for copolymerization with tetrafluoroethylene. Modifying termonomers, eg, perfluorobutylethylene and perfluoropropylene, are incorporated by free-radical polymerization. [Pg.365]

In order to increase the solubiUty parameter of CPD-based resins, vinyl aromatic compounds, as well as other polar monomers, have been copolymerized with CPD. Indene and styrene are two common aromatic streams used to modify cyclodiene-based resins. They may be used as pure monomers or contained in aromatic steam cracked petroleum fractions. Addition of indene at the expense of DCPD in a thermal polymerization has been found to lower the yield and softening point of the resin (55). CompatibiUty of a resin with ethylene—vinyl acetate (EVA) copolymers, which are used in hot melt adhesive appHcations, may be improved by the copolymerization of aromatic monomers with CPD. As with other thermally polymerized CPD-based resins, aromatic modified thermal resins may be hydrogenated. [Pg.355]

Polymerization using oxygen is not well understood it is known that oxygen copolymerizes with ethylene to form peroxidic copolymers (10). Other free-radical generators such as azo compounds and carbon—carbon compounds have found only limited use in the synthesis of LDPE. [Pg.375]

The simplest monomer, ethylenesulfonic acid, is made by elimination from sodium hydroxyethyl sulfonate and polyphosphoric acid. Ethylenesulfonic acid is readily polymerized alone or can be incorporated as a copolymer using such monomers as acrylamide, aHyl acrylamide, sodium acrylate, acrylonitrile, methylacrylic acid, and vinyl acetate (222). Styrene and isobutene fail to copolymerize with ethylene sulfonic acid. [Pg.83]

Macromonomers always lead to the formation of graft copolymers. For example, the vinyl-terminated polystyrene can be copolymerized with ethylene to produce a graft copolymer of polyethylene, whereby the vinyl moiety of polystyrene is integrally polymerized into the linear polyethylene backbone ... [Pg.732]

Polyaddition reactions based on isocyanate-terminated poly(ethylene glycol)s and subsequent block copolymerization with styrene monomer were utilized for the impregnation of wood [54]. Hazer [55] prepared block copolymers containing poly(ethylene adipate) and po-ly(peroxy carbamate) by an addition of the respective isocyanate-terminated prepolymers to polyazoesters. By both bulk and solution polymerization and subsequent thermal polymerization in the presence of a vinyl monomer, multiblock copolymers could be formed. [Pg.741]

Propylene can be polymerized alone or copolymerized with other monomers such as ethylene. Many important chemicals are based on propylene such as isopropanol, allyl alcohol, glycerol, and acrylonitrile. Chapter 8 discusses the production of these chemicals. U.S. production of proplylene was approximately 27.5 billion lbs in 1997. ... [Pg.34]

Ethylene reacts by addition to many inexpensive reagents such as water, chlorine, hydrogen chloride, and oxygen to produce valuable chemicals. It can be initiated by free radicals or by coordination catalysts to produce polyethylene, the largest-volume thermoplastic polymer. It can also be copolymerized with other olefins producing polymers with improved properties. Eor example, when ethylene is polymerized with propylene, a thermoplastic elastomer is obtained. Eigure 7-1 illustrates the most important chemicals based on ethylene. [Pg.188]

About half of the styrene produced is polymerized to polystyrene, an easily molded, low-cost thermoplastic that is somewhat brittle. Foamed polystyrene can be made by polymerizing it in the presence of low-boiling hydrocarbons, which cause bubbles of gas in the solid polymer after which it migrates out and evaporates. Modification and property enhancement of polystyrene-based plastics can be readily accomplished by copolymerization with other substituted ethylenes (vinyl monomers) for example, copolymerization with butadiene produces a widely used synthetic rubber. [Pg.125]

It has been shown by Barb and by Dainton and Ivin that a 1 1 complex formed from the unsaturated monomer (n-butene or styrene) and sulfur dioxide, and not the latter alone, figures as the comonomer reactant in vinyl monomer-sulfur dioxide polymerizations. Thus the copolymer composition may be interpreted by assuming that this complex copolymerizes with the olefin, or unsaturated monomer. The copolymerization of ethylene and carbon monoxide may similarly involve a 1 1 complex (Barb, 1953). [Pg.183]


See other pages where Ethylene polymerization copolymerization with is mentioned: [Pg.96]    [Pg.217]    [Pg.53]    [Pg.218]    [Pg.174]    [Pg.42]    [Pg.901]    [Pg.914]    [Pg.338]    [Pg.110]    [Pg.518]    [Pg.327]    [Pg.216]    [Pg.58]    [Pg.130]    [Pg.453]    [Pg.367]    [Pg.379]    [Pg.397]    [Pg.463]    [Pg.464]    [Pg.86]    [Pg.142]    [Pg.144]    [Pg.155]    [Pg.746]    [Pg.33]    [Pg.62]    [Pg.294]    [Pg.618]    [Pg.446]    [Pg.27]    [Pg.842]    [Pg.156]    [Pg.108]   


SEARCH



Copolymerization polymerization

Ethylene copolymerization

Ethylene copolymerization with

Ethylene copolymerizations

Ethylene polymerization

Polymerization copolymerizations

Polymerization, with

© 2024 chempedia.info