Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene hybridization

Some support materials can be rendered Lewis acidic enough to ionize dialkyl metallocenes. Marks and co-workers have reported (33) that alnmina dried at very high temperatures can react at least to some small degree with both thorium-and zirconium-based metallocene dimethyl species to yield active catalysts for polyethylene. The resulting cationic metal center is believed to remain coordinated to the surface through an Al-O-M Lewis acid/base linkage, at least prior to exposure to ethylene. Hybrid surface/cocatalyst systems based on aluminum alkyl-treated clays have been developed (34) in which the solid substrate appears to play some role in promoting polymerization activity far beyond that expected for non-methyl aluminoxane- or trialkylaluminum-activated catalysts. [Pg.4562]

The transformation of ethylene to the carbene requires the re-pairing of three electron pairs. It is a phase-preserving reaction, so that the loop is an ip one. The sp -hybridized carbon atom formed upon H transfer is a chiral center consequently, there are two equivalent loops, and thus conical intersections, leading to two enantiomers. [Pg.367]

We conclude this introduction to hydrocarbons by describing the orbital hybridization model of bonding m ethylene and acetylene parents of the alkene and alkyne families respectively... [Pg.89]

Ethylene is planar with bond angles close to 120° (Figure 2 15) therefore some hybridization state other than sp is required The hybridization scheme is determined by the number of atoms to which carbon is directly attached In sp hybridization four atoms are attached to carbon by ct bonds and so four equivalent sp hybrid orbitals are required In ethylene three atoms are attached to each carbon so three equivalent hybrid orbitals... [Pg.89]

Each carbon of ethylene uses two of its sp hybrid orbitals to form ct bonds to two hydrogen atoms as illustrated m the first part of Figure 2 17 The remaining sp orbitals one on each carbon overlap along the mternuclear axis to give a ct bond connecting the two carbons... [Pg.90]

FIGURE 2 17 The carbon-carbon double bond in ethylene has a cr component and a tt compo nent The cr component arises from overlap of sp hybridized orbitals along the internuclear axis The tt component results from a side by side overlap of 2p orbitals... [Pg.91]

Section 2 20 Carbon is sp hybridized in ethylene and the double bond has a ct com ponent and a rr component The sp hybridization state is derived by mix mg the 2s and two of the three 2p orbitals Three equivalent sp orbitals result and their axes are coplanar Overlap of an sp orbital of one car bon with an sp orbital of another produces a ct bond between them Each carbon still has one unhybridized p orbital available for bonding and side by side overlap of the p orbitals of adjacent carbons gives a rr bond between them... [Pg.99]

The structure of ethylene and the orbital hybridization model for its double bond were presented m Section 2 20 and are briefly reviewed m Figure 5 1 Ethylene is planar each carbon is sp hybridized and the double bond is considered to have a a component and a TT component The ct component arises from overlap of sp hybrid orbitals along a line connecting the two carbons the tt component via a side by side overlap of two p orbitals Regions of high electron density attributed to the tt electrons appear above and below the plane of the molecule and are clearly evident m the electrostatic potential map Most of the reactions of ethylene and other alkenes involve these electrons... [Pg.190]

FIGURE 5 1 (a) The planar framework of u bonds in ethylene showing bond distances and angles (b) and (c) The p orbitals of two sp hybridized carbons overlap to produce a tt bond (d) The electrostatic potential map shows a region of high negative potential due to the tt elec trons above and below the plane of the atoms... [Pg.191]

An sp hybridization model for the carbon-carbon triple bond was developed in Section 2 21 and is reviewed for acetylene in Figure 9 2 Figure 9 3 compares the electrostatic potential maps of ethylene and acetylene and shows how the second tr bond m acetylene causes a band of high electron density to encircle the molecule... [Pg.366]

The property that most separates acetylene from ethane and ethylene is its acidity too can be explained on the basis of the greater electronegativity of sp hybridized... [Pg.367]

Bonding m formaldehyde can be described according to an sp hybridization model analogous to that of ethylene (Figure 17 2) According to this model the carbon-... [Pg.706]

FIGURE 17 2 Both (a) ethylene and (b) formal dehyde have the same num ber of electrons and carbon IS sp hybridized in both In formaldehyde one of the carbons is replaced by an sp hybridized oxygen Like the carbon-carbon double bond of ethylene the carbon-oxygen double bond of formaldehyde is com posed of a (T component and a TT component... [Pg.707]

Poly(ethylene oxide). The synthesis and subsequent hydrolysis and condensation of alkoxysilane-terniinated macromonomers have been studied (39,40). Using Si-nmr and size-exclusion chromatography (sec) the evolution of the siUcate stmctures on the alkoxysilane-terniinated poly(ethylene oxide) (PEO) macromonomers of controlled functionahty was observed. Also, the effect of vitrification upon the network cross-link density of the developing inorganic—organic hybrid using percolation and mean-field theory was considered. [Pg.329]

Related work is discussed in the section on poly(ethylene oxide) hybrids (40). [Pg.330]

The addition product, C QHgNa, called naphthalenesodium or sodium naphthalene complex, may be regarded as a resonance hybrid. The ether is more than just a solvent that promotes the reaction. StabiUty of the complex depends on the presence of the ether, and sodium can be Hberated by evaporating the ether or by dilution using an indifferent solvent, such as ethyl ether. A number of ether-type solvents are effective in complex preparation, such as methyl ethyl ether, ethylene glycol dimethyl ether, dioxane, and THF. Trimethyl amine also promotes complex formation. This reaction proceeds with all alkah metals. Other aromatic compounds, eg, diphenyl, anthracene, and phenanthrene, also form sodium complexes (16,20). [Pg.163]

Other organic—inorganic hybrids include poly(ethyloxazoline)—siUca, poly(vinyl alcohol)—siUca, poly(arylene ether) ketone—siUca, polyimide—siUca, polyozoline—sihca, poly(ethylene oxide)—siUca, and polymers—modified alkoxysilane. [Pg.260]

Structure. Ethylene is a planar molecule with a carbon—carbon bond distance of 0.134 nm, which is shorter than the C—C bond length of 0.153 nm found in ethane. The C—H bond distance is 0.110 nm, and the bond angles are [Pg.432]

The hybridization concept can also be applied to molecules containing double and triple bonds. The descriptive valence bond approach to the bonding in ethylene and... [Pg.4]

Although sp3 hybridization is the most common electronic state of carbon, it s not the only possibility. Look at ethylene, C2H4, for example. It was recognized more than 100 years ago that ethylene carbons can be tetravalent only if they share four electrons and are linked by a double bond. Furthermore, ethylene is planar (flat) and has bond angles of approximately 120° rather than 109.5°. [Pg.15]

Figure 1.14 The structure of ethylene. Orbital overlap of two sp hybridized carbons forms a carbon-carbon double bond. One part of the double bond results from a (head-on) overlap of sp2 orbitals (green), and the other part results from (sideways) overlap of unhybridized p orbitals (red/blue). The ir bond has regions of electron density on either side of a line drawn between nuclei. Figure 1.14 The structure of ethylene. Orbital overlap of two sp hybridized carbons forms a carbon-carbon double bond. One part of the double bond results from a (head-on) overlap of sp2 orbitals (green), and the other part results from (sideways) overlap of unhybridized p orbitals (red/blue). The ir bond has regions of electron density on either side of a line drawn between nuclei.
Like the carbon atoms in ethylene, the carbon atom in formaldehyde is in a double bond and therefore sp2-hybridized. [Pg.17]

To illustrate this rule, consider the ethylene (C2H4) and acetylene (C2H2) molecules. You will recall that the bond angles in these molecules are 120° for ethylene and 180° for acetylene. This implies sp2 hybridization in C2H4 and sp hybridization in C2H2 (see Table 7.4). Using blue lines to represent hybridized electron pairs,... [Pg.188]

Unsaturated organic molecules, such as ethylene, can be chemisorbed on transition metal surfaces in two ways, namely in -coordination or di-o coordination. As shown in Fig. 2.24, the n type of bonding of ethylene involves donation of electron density from the doubly occupied n orbital (which is o-symmetric with respect to the normal to the surface) to the metal ds-hybrid orbitals. Electron density is also backdonated from the px and dM metal orbitals into the lowest unoccupied molecular orbital (LUMO) of the ethylene molecule, which is the empty asymmetric 71 orbital. The corresponding overall interaction is relatively weak, thus the sp2 hybridization of the carbon atoms involved in the ethylene double bond is retained. [Pg.52]


See other pages where Ethylene hybridization is mentioned: [Pg.4]    [Pg.4]    [Pg.89]    [Pg.89]    [Pg.91]    [Pg.491]    [Pg.124]    [Pg.96]    [Pg.132]    [Pg.66]    [Pg.5]    [Pg.59]    [Pg.89]    [Pg.367]    [Pg.15]    [Pg.15]   
See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.352 ]

See also in sourсe #XX -- [ Pg.366 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Ethylene hybrid atomic orbitals

Ethylene hybrid orbitals

Hybrid Orbitals and the Structure of Ethylene

Hybrid ethylene

Hybrid ethylene

Hybridization and Bonding in Ethylene

Hybridization in ethylene

Orbital hybridization ethylene

Orbital hybridization in ethylene and alkenes

© 2024 chempedia.info