Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylbenzene zeolites

Zeolite-Based All lation. Zeohtes have the obvious advantages of being noncorrosive and environmentally benign. They have been extensively researched as catalysts for ethylbenzene synthesis. Eadier efforts were unsuccessful because the catalysts did not have sufficient selectivity and activity and were susceptible to rapid coke formation and deactivation. [Pg.478]

The reaction scheme is rather complex also in the case of the oxidation of o-xylene (41a, 87a), of the oxidative dehydrogenation of n-butenes over bismuth-molybdenum catalyst (87b), or of ethylbenzene on aluminum oxide catalysts (87c), in the hydrogenolysis of glucose (87d) over Ni-kieselguhr or of n-butane on a nickel on silica catalyst (87e), and in the hydrogenation of succinimide in isopropyl alcohol on Ni-Al2Oa catalyst (87f) or of acetophenone on Rh-Al203 catalyst (87g). Decomposition of n-and sec-butyl acetates on synthetic zeolites accompanied by the isomerization of the formed butenes has also been the subject of a kinetic study (87h). [Pg.24]

Zeoliltes seem particularly suited to take over the job and in fact are doing so already for aromatic alkylation. Thus in ethylbenzene manufacture (from benzene and ethene) modern processes apply zeolites (H-ZSM-5, H-Y) as the catalyst, substituting conventional processes based on AICI3 or BF3-on-alumina catalysis. Substantial waste reductions are achieved. [Pg.209]

Currently, benzene alkylation to produce ethylbenzene and cumene is routinely carried out using zeohtes. We performed a study comparing a zeohte Y embedded in TUD-1 to a commercial zeolite Y for ethylbenzene synthesis. Two different particle diameters (0.3 and 1.3 mm) were used for each catalyst. In Figure 41.7, the first-order rate constants were plotted versus particle diameter, which is analogous to a linear plot of effectiveness factor versus Thiele modulus. In this way, the rate constants were fitted for both catalysts. [Pg.375]

More recently, using the same methodology as described above, a commercially available alumina-bound zeolite Beta (80 wt %) was tested for ethylbenzene synthesis (28). A first-order rate constant of 0.29 cm /g-sec was obtained. A 16% zeolite Beta in TUD-1 catalyst also had a rate constant of 0.30 cm ... [Pg.375]

Ethylbenzene (EB) transformation was carried out on bifonctional catalysts based on 10MR zeolites (ZSM-5, Ferrierite, ZSM-22, EU-1) and compared to Mordenite based catalysts. This work shows that monodimensional (ID) 10MR channels or large cavities are highly selective towards isomerization. For 10MR(1D) zeolites, this selectivity is attributed to microporosity blockage suggesting a pore mouth catalysis. [Pg.425]

The objective of this work is to determine the influence of the porous structure (size and shape) and acidity (number and strength of the acid sites) on isomerization selectivity during the conversion of ethylbenzene on bifunctional catalysts PLAI2O3/ 10 MR zeolite. The transformation of EB was carried out on intimate mixtures of Pt/Al203 (PtA) and 10 MR zeolites (ZSM-5, ZSM-22, Ferrierite, EU-1) catalysts and compared to Mordenite reference catalyst activity. [Pg.425]

On ferrierite, ZSM-22 and EU-1 zeolite catalysts, 10MR monodimensional zeolite structures (ID), the main reaction is the isomerization of ethylbenzene (figure la). ZSM-5, 10MR three-dimensional structure (3D) zeolite is very selective in dealkylation (90%) (figure lb) and no deactivation was observed within 8 hours of reaction. This particular selectivity of the zeolite ZSM-5 can be partly explained by the presence of strong acid sites and its porous structure that on one hand promotes the containment of molecules in the pores (presence of 8-9A cages at the intersection of channels) and on the other hand prevents the formation of coke and therefore pore blockage. [Pg.426]

Among the wide variety of organic reactions in which zeolites have been employed as catalysts, may be emphasized the transformations of aromatic hydrocarbons of importance in petrochemistry, and in the synthesis of intermediates for pharmaceutical or fragrance products.5 In particular, Friede 1-Crafts acylation and alkylation over zeolites have been widely used for the synthesis of fine chemicals.6 Insights into the mechanism of aromatic acylation over zeolites have been disclosed.7 The production of ethylbenzene from benzene and ethylene, catalyzed by HZSM-5 zeolite and developed by the Mobil-Badger Company, was the first commercialized industrial process for aromatic alkylation over zeolites.8 Other typical examples of zeolite-mediated Friedel-Crafts reactions are the regioselective formation of p-xylene by alkylation of toluene with methanol over HZSM-5,9 or the regioselective p-acylation of toluene with acetic anhydride over HBEA zeolites.10 In both transformations, the p-isomers are obtained in nearly quantitative yield. [Pg.32]

Albene [Alcohol benzene] A process for making ethylbenzene from aqueous ethanol and benzene. The aqueous ethanol may contain as little as 30 percent ethanol, such as that obtained by one distillation of liquors from sugar fermentation. The mixed vapors are passed over a catalyst at approximately 350°C. The catalyst ( Encilite-2 ) is a ZSM-5-type zeolite in which some of the aluminum has been replaced by iron. Developed in India jointly by the... [Pg.14]

Ebex [Ethylbenzene extraction] A version of the Sorbex process, for extracting ethylbenzene from mixtures of aromatic C8 isomers. The adsorbent is a zeolite. It had not been commercialized as of 1984. [Pg.95]

EBMax A continuous, liquid-phase process for making ethylbenzene from ethylene and benzene, using a zeolite catalyst. Developed by Raytheon Engineers and Constructors and Mobil Oil Corporation and first installed at Chiba Styrene Monomer in Japan in 1995. Generally similar to the Mobil/Badger process, but the improved catalyst permits the reactor size to be reduced by two thirds. [Pg.95]

Ethylbenzene Also called UOP Ethylbenzene. A liquid-phase process for making ethylbenzene by reacting ethylene with benzene, catalyzed by a zeolite. The process is usually coupled with one for converting ethylbenzene to styrene. Developed by Unocal Corporation and now licensed by UOP and ABB Lummus Crest. [Pg.103]

Isomar [Isomerization of aromatics] A catalytic process for isomerizing xylene isomers and ethylbenzene into equilibrium isomer ratios. Usually combined with an isomer separation process such as Parex (1). The catalyst is a zeolite-containing alumina catalyst with platinum. Developed by UOP and widely licensed by them. It was first commercialized in 1967 by 1992, 32 plants had been commissioned and 8 others were in design or construction. See also Isolene II. [Pg.147]

Ethylbenzene plants, 23 330-331 Ethylbenzene-styrene complex, 23 328 Ethylbenzene synthesis molecular sieves in, 16 845 zeolite-based alkylation in, 23 331-333 Ethyl benzoate, 3 635 Ethyl P-D-glucopyranoside, 4 701 7-Ethylbicyclooxazolidine, antimicrobial used in cosmetics, 7 831t Ethyl bromide, physical properties of, 4 351t... [Pg.332]

The effect of different zeolite structures and pore systems is also reflected in the data of Table II. With the intermediate pore ZSM-5, xylene is apparently much less reactive than ethylbenzene, both as an alkyl donor and acceptor, than it is with the large pore zeolites, ZSM-4 and synthetic mordenite. [Pg.280]

This may be partly the result of increased steric crowding in the transition state of transalkylation. Another contributory factor to the increased selectivity in ZSM-5 is the higher diffusion rate of ethylbenzene vs m-/o-xylene in ZSM-5 and hence a higher steady state concentration ratio [EB]/[xyl] in the zeolite interior than in the outside phase. Diffusional restriction for xylenes vs ethylbenzene may also be indicated by the better selectivity of synthetic mordenite vs ZSM-4, since the former had a larger crystal size. [Pg.280]

Alkylation over the MWW Zeolite. The MWW (or MCM-22) zeolite developed by Mobil as catalyst for ethylbenzene and cumene production deserves particular attention. Indeed, this zeolite presents unique structural features (Figure 12.5). Its structure is constituted of three independent pore systems " large supercages (inner diameter of 7.1 A dehned by a 12-member-ring [12-MR], height 18.2 A) each connected to six others through 10-MR apertures... [Pg.242]

Since zeolite catalysts are successfully introduced in the refining and petrochemical industries, it is not surprising that most of the recent advances concern incremental improvements of existing processes with the development of new generations of catalysts (e.g., dewaxing, ethylbenzene and cumene synthesis). The number of newer applications is much more limited, for example, direct synthesis of phenol from benzene and aromatization of short-chain alkanes, etc. However, both the improvement and development of processes contribute significantly to environmental advances. [Pg.248]

Ethylbenzene from ethylbenzene, p-, m-, o-xylene Beta zeolite, gallium beta zeolite p-Diethylbenzene [80, 81]... [Pg.180]

Barthomeuf D.M. (1986) Process for separating ethylbenzene from xylenes by selective adsorption on a Beta zeolite. U.S. Patent 4,584,424. [Pg.195]


See other pages where Ethylbenzene zeolites is mentioned: [Pg.40]    [Pg.222]    [Pg.113]    [Pg.523]    [Pg.365]    [Pg.381]    [Pg.425]    [Pg.425]    [Pg.425]    [Pg.427]    [Pg.362]    [Pg.179]    [Pg.179]    [Pg.332]    [Pg.1032]    [Pg.278]    [Pg.116]    [Pg.403]    [Pg.241]    [Pg.241]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Ethylbenzene

Ethylbenzene zeolite catalyst processes

Zeolites ethylbenzene/cumene production

© 2024 chempedia.info