Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethyl vinyl ether, cycloaddition with

The cycloaddition with ethyl vinyl ether proceeded with excellent yield either under thermal conditions (80 °C, 5 days) or in the presence of LiC104 (20 °C, 17 h). In the former case a reasonable exo/endo and induced diastereoselectivity was observed, however using LiC104 the asymmetric induction was null. [Pg.43]

The stereochemistry of the product formed in the cycloaddition reaction depends on the approach of the substrate. There are two different approaches by which the reaction can proceed - endo and exo. For the reaction of e.g., a / , y-un-saturated a-keto ester with an ethyl vinyl ether there are four possible approaches... [Pg.153]

The chiral BOX-copper(ll) complexes, (S)-21a and (l )-21b (X=OTf, SbFg), were found by Evans et al. to catalyze the enantioselective cycloaddition reactions of the a,/ -unsaturated acyl phosphonates 49 with ethyl vinyl ether 46a and the cyclic enol ethers 50 giving the cycloaddition products 51 and 52, respectively, in very high yields and ee as outlined in Scheme 4.33 [38b]. It is notable that the acyclic and cyclic enol ethers react highly stereoselectively and that the same enantiomer is formed using (S)-21a and (J )-21b as the catalyst. It is, furthermore, of practical importance that the cycloaddition reaction can proceed in the presence of only 0.2 mol% (J )-21a (X=SbF6) with minimal reduction in the yield of the cycloaddition product and no loss of enantioselectivity (93% ee). [Pg.179]

More recently, further developments have shown that the reaction outlined in Scheme 4.33 can also proceed for other alkenes, such as silyl-enol ethers of acetophenone [48 b], which gives the endo diastereomer in up to 99% ee. It was also shown that / -ethyl-/ -methyl-substituted acyl phosphonate also can undergo a dia-stereo- and enantioselective cycloaddition reaction with ethyl vinyl ether catalyzed by the chiral Ph-BOX-copper(ll) catalyst. The preparative use of the cycloaddition reaction was demonstrated by performing reactions on the gram scale and showing that no special measures are required for the reaction and that the dihydro-pyrans can be obtained in high yield and with very high diastereo- and enantioselective excess. [Pg.179]

Our development of the catalytic enantioselective inverse electron-demand cycloaddition reaction [49], which was followed by related papers by Evans et al. [38, 48], focused in the initial phase on the reaction of mainly / , y-unsaturated a-keto esters 53 with ethyl vinyl ether 46a and 2,3-dihydrofuran 50a (Scheme 4.34). [Pg.179]

In an analogous study by Meske, the impact of various oxazaborolidinone catalysts for the 1,3-dipolar cycloaddition reactions between acyclic nitrones and vinyl ethers was studied [31]. Both the diastereo- and the enantioselectivities obtained in this work were low. The highest enantioselectivity was obtained by the application of 100 mol% of the tert-butyl-substituted oxazaborolidinone catalyst 3d [27, 32] in the 1,3-dipolar cycloaddition reaction between nitrone la and ethyl vinyl ether 8a giving endo-9a and exo-9a in 42% and 27% isolated yield, respectively, with up to 20% ee for endo-9a as the best result (Scheme 6.10). [Pg.219]

The above described reaction has been extended to the application of the AlMe-BINOL catalyst to reactions of acyclic nitrones. A series chiral AlMe-3,3 -diaryl-BINOL complexes llb-f was investigated as catalysts for the 1,3-dipolar cycloaddition reaction between the cyclic nitrone 14a and ethyl vinyl ether 8a [34], Surprisingly, these catalysts were not sufficiently selective for the reactions of cyclic nitrones with ethyl vinyl ether. Use of the tetramethoxy-substituted derivative llg as the catalyst for the reaction significantly improved the results (Scheme 6.14). In the presence of 10 mol% llg the reaction proceeded in a mixture of CH2CI2 and petroleum ether to give the product 15a in 79% isolated yield. The diastereoselectiv-ity was the same as in the acyclic case giving an excellent ratio of exo-15a and endo-15a of >95 <5, and exo-15a was obtained with up to 82% ee. [Pg.222]

The Lewis acid-catalyzed reaction of nitrone 21 with ethyl vinyl ether 22 (Scheme 8.8) was also investigated for BH3 and AlMe3 coordinated to 21 [32]. The presence of BH3 decreases the activation energy for the formation of 23 by 3.1 and 4.5 kcal mol to 9.6 kcal mol for the exoselective reaction and 11.6 kcal-mol for the endo-selective reaction, respectively, while the activation energy for the formation of 24 increases by >1.4 kcal mol , compared to those for the uncatalyzed reaction. The transition-state structure for the BH3-exo-selective 1,3-dipolar cycloaddition reaction of nitrone 21 with ethyl vinyl ether 22 is shown in Fig. 8.19. [Pg.325]

Fig. 8.19 The calculated transition-state structure for the BH3-exo-selective 1,3-dipolar cycloaddition reaction of nitrone 21 with ethyl vinyl ether 22 [32 ... Fig. 8.19 The calculated transition-state structure for the BH3-exo-selective 1,3-dipolar cycloaddition reaction of nitrone 21 with ethyl vinyl ether 22 [32 ...
When (62) was treated with ethyl vinyl ether the cycloadduct (63) is afforded. If (62) is reacted with electron donating dienophiles such as allyl alcohols, transesterification and intramolecular cycloaddition occurs in the presence of a catalytic amount of distannoxane catalyst to give cis-fused polycyclic systems such as (64) <96T733>. [Pg.182]

Giomi s group developed a domino process for the synthesis of spiro tricyclic nitroso acetals using a, 3-unsaturated nitro compounds 4-163 and ethyl vinyl ether to give the nitrone 4-164, which underwent a second 1,3-dipolar cycloaddition with the enol ether (Scheme 4.35) [56]. The diastereomeric cycloadducts formed, 4-165 and 4-166 can be isolated in high yield. However, if R is hydrogen, an elimination process follows to give the acetals 4-167 in 56% yield. [Pg.303]

Asymmetric tandem cycloaddition of a chiral carbohydrate nitroalkene with ethyl vinyl ether in the presence of electron-withdrawing alkenes produces a facile assembly of bicyclic systems, which can further be selectively cleaved to give homologated carbohydrates (Eq. 8.110).176... [Pg.284]

Nitrooxazoles and 4-nitroisoxazoles 480 are versatile substrates for domino cycloaddition reactions with ethyl vinyl ether 481 to form the tricyclic nitroso acetals 482 and 483 (Equation 129) <1999T13809, 2001T4237>. [Pg.763]

Increasing use is being made of pyran syntheses based upon [4 + 2] cycloadditions of carbonyl compounds. The appropriate unsaturated aldehyde with ethyl vinyl ether yields 53 with peracids this affords an epoxide that undergoes ring contraction to the aldehyde 54 (Scheme 23) and rhodium catalyzed decarbonylation affords the required 3-alkylfuran with the optical center intact.116 Acetoxybutadiene derivatives add active carbonyl compounds giving pyrans that contract under the influence of acids to give... [Pg.189]

It was found that 2-propenyloxymagnesium bromide reacts much more readily with nitrile oxides than other known dipolarophiles of electron-deficient, electron-rich, and strained types, including 3-buten-2-one, ethyl vinyl ether, and norbomene, respectively (147). Therefore, this BrMg-alkoxide is highly effective in various nitrile oxide cycloaddition reactions, including those of nitrile oxide/Lewis acid complexes. [Pg.20]

On the basis of available experimental data, it is impossible to choose a definite pathway of elimination of silanol. However, study of silylation of methyl P -nitropropionate (411) with BSA in the presence of trapping agents rigorously proved that silyl nitronate D is initially formed. This compound can be detected in the [3 + 2]-cycloaddition reaction with methyl acrylate product (413). If silylation of AN (411) is performed in the presence of ethyl vinyl ether, a-nitrosoalkene E can be successfully trapped in as heterodiene a Diels-Alder reaction. Dihydroox-azine (414) is formed, and its silylation affords isolable product (415). [Pg.655]

Mukai et al.85 reported an asymmetric 1,3-dipolar cycloaddition of chromium(0)-complexed benzaldehyde derivatives. As shown in Scheme 5 52, heating chiral nitrone 171a, derived from Cr(CO)3-complexed benzaldehyde, with electron-rich olefins such as styrene (173a) or ethyl vinyl ether (173b) generates the corresponding chiral a.v-3,5-disubstitutcd isoxazolidine adduct 174 or... [Pg.308]

Jprgensen and co-workers (247) investigated the asymmetric 1,3-dipolar cycloaddition reaction catalyzed by bis(oxazoline)-copper(II) complexes. In the presence of 25 mol% 269c, nitrone (401) reacts with ethyl vinyl ether and methoxypropene to afford the [3 + 2] adducts in modest diastereoselectivity and high enantioselectivity, Eq. 217. Ethyl vinyl ether preferentially forms the exo adduct while methoxypropene prefers the endo mode for reasons that are unclear. [Pg.127]

The asymmetric tandem cycloaddition of the chiral carbohydrate nitroalkene (35) with ethyl vinyl ether involves the initial formation of the nitronate (36) which reacts exclusively with electron-withdrawing alkenes by 3 -I- 2-cycloaddition to yield chiral bicycles (37) and (38) (Scheme 12). ... [Pg.460]

In 2008, Yamamoto et al. disclosed an asymmetric 1,3-dipolar cycloaddition of diarylnitrones 156 with ethyl vinyl ether (157) (Scheme 66). Under the influence of the bulky chiral A-triflyl phosphoramide (5)-4s (5 mol%, R = 2,6- Prj-4-Ad-C Hj), the enrfo-products 158 were formed as the major diastereomers in good yields and enantioselectivities (66 to >99%, 7 1-32 1 endolexo, 70-93% ee(endo)) [86]. High asymmetric induction was achieved only with electron-deficient aryl groups on the nitrones. [Pg.445]

Scheme 66 1,3-Dipolar cycloaddition of diarylnitrones with ethyl vinyl ether 154... Scheme 66 1,3-Dipolar cycloaddition of diarylnitrones with ethyl vinyl ether 154...
The perfluoroacetamide catalysts, rhodium(II) trifluoroacetamidate [Rh2(tfm)4] and rhodium(II) perfluorobutyramidate [Rh2(pfbm)4], are interesting hybrid molecules that combine the features of the amidate and perfluorinated ligands. In early studies, these catalysts were shown to prefer insertion over cycloaddition [30]. They also demonstrated a preference for oxindole formation via aromatic C-H insertion [31], even over other potential reactions [86]. In still another example, rhodium(II) perfluorobutyramidate showed a preference for aromatic C-H insertion over pyridinium ylide formation, in the synthesis of an indole nucleus [32]. Despite this demonstrated propensity for aromatic insertion, the perfluorobutyramidate was shown to be an efficient catalyst for the generation of isomtinchnones [33]. The chemoselectivity of this catalyst was further demonstrated in the cycloaddition with ethyl vinyl ethers [87] and its application to diversity-oriented synthesis [88]. However, it was demonstrated that while diazo imides do form isomtinchnones under these conditions, the selectivity was completely reversed from that observed with rhodium(II) acetate [89, 90]. [Pg.439]

In addition, phenylsufonylallene (110), a,(3-unsaturated phosphonates (111), and alkenes with perfluorinated substituents (112) are all useful dipolarophiles. The yields observed with methyl 2-propenoate are significantly lower than those with the corresponding acrylate (entries 7 and 9), because of the additional substituent. On the other hand, the dipolar cycloadditions with either ethyl vinyl ether, 1-hexene, cyclohexene, or a trisubstituted dipolarophile provide the corresponding isoxazolidines in either low yields or not at all (18). [Pg.119]

This pressure effect was also observed in the tandem cycloaddition nitroalkene. Combination of methyl acrylate with 2-nitrostyrene and ethyl vinyl ether proceeds at 15 kbar over 1 h to produce a mixmre of diastereomeric nitroso acetals (Eq. 2.24) (83,235,236). [Pg.144]


See other pages where Ethyl vinyl ether, cycloaddition with is mentioned: [Pg.86]    [Pg.300]    [Pg.300]    [Pg.224]    [Pg.233]    [Pg.69]    [Pg.169]    [Pg.11]    [Pg.207]    [Pg.890]    [Pg.310]    [Pg.55]    [Pg.33]    [Pg.37]    [Pg.302]    [Pg.305]    [Pg.149]    [Pg.449]    [Pg.361]    [Pg.892]    [Pg.25]    [Pg.106]    [Pg.266]    [Pg.542]    [Pg.582]   
See also in sourсe #XX -- [ Pg.134 , Pg.138 ]




SEARCH



Cycloaddition ether

Cycloaddition with

Ether ethylic

Ethers ethyl ether

Ethyl cycloaddition

Ethyl cycloaddition with

Ethyl ether

Ethyl vinyl ether

Ethyl-vinyl

Vinyl ethers, cycloadditions with

© 2024 chempedia.info