Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethanol materials

Recrystallization of 2-bromo-(3-nitro-4-benzyloxyphenyl)ethanol Materials and equipment... [Pg.158]

Preparation of an acetal from 3,4-dihydro-2//-pyran and starch has been described.1367 Water was not formed in this reaction, nor did crosslinking occur. Tetrahydropyran-2-yl derivatives of starch were also prepared when samples gelatinized in dimethyl sulfoxide were treated with 4-toluenesulfonic acid followed by 3,4-dihydro-2//-pyran. When the reaction mixtures were then transferred into ethanol, materials with a low degree-of-substitution were achieved. However, when the reaction mixture was poured into water, materials with an intermediate and high degrees-of-substitution were produced.1291 This reaction proceeded with preference for the C-6 position of the glucose units.1368... [Pg.233]

Aminoethyl)trimethylammonium chloride hydrochloride, (Cholamine chloride hydrochloride), (M.Wt. 175.11). Recryst. from ethanol. (Material very soluble in water.)... [Pg.110]

The insoluble residue of diphenylurea from the original filtration is chemically almost pure. It may be recrystallised from hot rectified spirit or ethanol, a process which will be necessary if the material contains fragments of porcelain. When using either of these solvents, however, the hot solution should be filtered at the pump using a small Buchner funnel and flask which again have been preheated by the filtration of some of the hot solvent, as the solution when cooled rapidly deposits the diphenylurea. iSym-Diphenylurea (or carbanilide) is thus obtained as fine colourless crystals, m.p. 237° yield, 1-1 5 S ... [Pg.126]

Caution.—If the ethanol used to extract the methylamine hydrochloride is not absolute, i.e., if it contains traces of water, considerably less than the above suggested quantity will be required for the extraction, because the solubility of the hydrochloride will be markedly increased by the water present. The recrystallised material will now, however, contain traces of ammonium chloride. [Pg.129]

Glucosazone is only slightly soluble in boiling ethanol or methylated spirit for recrystallisation therefore it is sufficient to place about 0 5 g. of the crude material in a 150 ml. flask fitted... [Pg.138]

The recrystallisation of diazoaminobenzene has to be performed with care, as the substance is freely soluble in most liquids and tends moreover to decompose if its solution is not rapidly cooled. Place 2 g. of the crude, freshly prepared, well-drained material in a boiling-tube, add about 15-20 ml. of ethanol and 1-2 drops of 10% aqueous sodium hydroxide solution, and then heat rapidly until boiling if the solution should contain insoluble impurities, filter through a small fluted paper, and at once cool the filtrate in ice-water. The diazoaminobenzene should rapidly crystallise out from the cold and stirred solution filter the crystals rapidly at the pump whilst the solution is still cold, as... [Pg.207]

When these benzoyl compounds separate in the course of the Schotten-Baumann reaction, they frequently occlude traces of unchanged benzoyl chloride, which thus escapes hydrolysis by the alkali it is advantageous there fore to recrystallise the benzoyl compounds whenever possible from ethanol or methylated spirit, since these solvents will esterify the unchanged chloride and so remove the latter from the recrystallised material. [Pg.244]

Mix 6 2 ml. (6 4 g.) of pure ethyl acetoacetate and 5 ml. of pure phenylhydrazine in an evaporating-basin of about 75 ml. capacity, add 0 5 ml. of acetic acid and then heat the mixture on a briskly boiling water-bath (preferably in a fume-cupboard) for I hour, occasionally stirring the mixture with a short glass rod. Then allow the heavy yellow syrup to cool somewhat, add 30-40 ml. of ether, and stir the mixture vigorously the syrup may now dissolve and the solution shortly afterwards deposit the crystalline pyrazolone, or at lower temperatures the syrup may solidify directly. Note. If the laboratory has been inoculated by previous preparations, the syrup may solidify whilst still on the water-bath in this case the solid product when cold must be chipped out of the basin, and ground in a mortar with the ether.) Now filter the product at the pump, and wash the solid material thoroughly with ether. Recrystallise the product from a small quantity of a mixture of equal volumes of water and ethanol. The methyl-phenyl-pyrazolone is obtained... [Pg.271]

Dissolve 8 8 g. (9 0 ml.) of cyclohexanone in 50 ml. of glacial acetic acid, add 8 ml. of phenylhydrazine, and boil the solution under reflux for 5 minutes. Cool the solution, when the tetrahydrocarbazole will crystallise out. Filter at the pump, drain well, and recrystallise either from aqueous ethanol or (better) from aqueous acetic acid. The recrystallisation should be performed rapidly, for the tetrahydrocarbazole undergoes atmO" spheric oxidation in hot solutions after recrystallisation, the compound should be dried in a vacuum desiccator and not in an oven. Repeated recrystallisation should be avoided. The tetrahydrocarbazole, after thorough drying, is obtained as colourless crystals, m.p. 118° yield of recrystallised material, 11 g. [Pg.295]

Breslow studied the dimerisation of cyclopentadiene and the reaction between substituted maleimides and 9-(hydroxymethyl)anthracene in alcohol-water mixtures. He successfully correlated the rate constant with the solubility of the starting materials for each Diels-Alder reaction. From these relations he estimated the change in solvent accessible surface between initial state and activated complex " . Again, Breslow completely neglects hydrogen bonding interactions, but since he only studied alcohol-water mixtures, the enforced hydrophobic interactions will dominate the behaviour. Recently, also Diels-Alder reactions in dilute salt solutions in aqueous ethanol have been studied and minor rate increases have been observed Lubineau has demonstrated that addition of sugars can induce an extra acceleration of the aqueous Diels-Alder reaction . Also the effect of surfactants on Diels-Alder reactions has been studied. This topic will be extensively reviewed in Chapter 4. [Pg.26]

Synthetic ethanol is derived from petroleum by hydration of ethylene In the United States some 700 million lb of synthetic ethanol is produced annually It is relatively inexpensive and useful for industrial applications To make it unfit for drinking it is denatured by adding any of a number of noxious materials exempting it from the high taxes most governments impose on ethanol used m beverages... [Pg.624]

Methanol ethanol and isopropyl alcohol are included among the readily available starting materials commonly found m laboratories where organic synthesis is carried out So too are many other alcohols All alcohols of four carbons or fewer as well as most... [Pg.624]

Perchlorates Carbonaceous materials, flnely divided metals particularly magnesium and aluminum, sulfur, benzene, oleflns, ethanol, sulfur, sulfuric acid... [Pg.1211]

Acetaldehyde, first used extensively during World War I as a starting material for making acetone [67-64-1] from acetic acid [64-19-7] is currendy an important intermediate in the production of acetic acid, acetic anhydride [108-24-7] ethyl acetate [141-78-6] peracetic acid [79-21 -0] pentaerythritol [115-77-5] chloral [302-17-0], glyoxal [107-22-2], aLkylamines, and pyridines. Commercial processes for acetaldehyde production include the oxidation or dehydrogenation of ethanol, the addition of water to acetylene, the partial oxidation of hydrocarbons, and the direct oxidation of ethylene [74-85-1]. In 1989, it was estimated that 28 companies having more than 98% of the wodd s 2.5 megaton per year plant capacity used the Wacker-Hoechst processes for the direct oxidation of ethylene. [Pg.48]

Butane-Naphtha Catalytic Liquid-Phase Oxidation. Direct Hquid-phase oxidation ofbutane and/or naphtha [8030-30-6] was once the most favored worldwide route to acetic acid because of the low cost of these hydrocarbons. Butane [106-97-8] in the presence of metallic ions, eg, cobalt, chromium, or manganese, undergoes simple air oxidation in acetic acid solvent (48). The peroxidic intermediates are decomposed by high temperature, by mechanical agitation, and by action of the metallic catalysts, to form acetic acid and a comparatively small suite of other compounds (49). Ethyl acetate and butanone are produced, and the process can be altered to provide larger quantities of these valuable materials. Ethanol is thought to be an important intermediate (50) acetone forms through a minor pathway from isobutane present in the hydrocarbon feed. Formic acid, propionic acid, and minor quantities of butyric acid are also formed. [Pg.68]

Esterifica.tlon. The process flow sheet (Fig. 4) outlines the process and equipment of the esterification step in the manufacture of the lower acryflc esters (methyl, ethyl, or butyl). For typical art, see References 69—74. The part of the flow sheet containing the dotted lines is appropriate only for butyl acrylate, since the lower alcohols, methanol and ethanol, are removed in the wash column. Since the butanol is not removed by a water or dilute caustic wash, it is removed in the a2eotrope column as the butyl acrylate a2eotrope this material is recycled to the reactor. [Pg.154]

Biological—Biochemical Processes. Fermentation is a biological process in which a water slurry or solution of raw material interacts with microorganisms and is enzymatically converted to other products. Biomass can be subjected to fermentation conditions to form a variety of products. Two of the most common fermentation processes yield methane and ethanol. Biochemical processes include those that occur naturally within the biomass. [Pg.17]


See other pages where Ethanol materials is mentioned: [Pg.329]    [Pg.329]    [Pg.427]    [Pg.329]    [Pg.329]    [Pg.427]    [Pg.70]    [Pg.164]    [Pg.897]    [Pg.123]    [Pg.129]    [Pg.173]    [Pg.211]    [Pg.216]    [Pg.273]    [Pg.354]    [Pg.510]    [Pg.714]    [Pg.768]    [Pg.839]    [Pg.977]    [Pg.15]    [Pg.214]    [Pg.168]    [Pg.244]    [Pg.36]    [Pg.431]    [Pg.425]    [Pg.425]    [Pg.433]    [Pg.433]    [Pg.434]    [Pg.445]    [Pg.460]    [Pg.536]    [Pg.27]   
See also in sourсe #XX -- [ Pg.5 , Pg.157 ]




SEARCH



© 2024 chempedia.info