Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Erythrose synthesis

With the same synthetic sequence, labeled ribose molecules produced AIRs labeled on the ribose moiety. From D-erythrose and (l3C)NaCN, the Fischer-Kiliani synthesis, as modernized by Serianni et al.59 produced D-(l-l3C)ribose and D-(l-l3C)arabinose. The labeled arabinose was transformed into D-(2-l3C)ri-bose in the presence of dioxobis(2,4-pentanedionato)-0-0 -molybdenum(VI) in... [Pg.295]

Another example of the ability of proteinogenic amino acids, small peptides, and amines to catalyse the formation of new C-C bonds has been demonstrated by Weber and Pizzarello they were able to carry out model reactions for the stereospecific synthesis of sugars (tetroses) using homochiral L-dipeptides. The authors achieved a D-enantiomeric excess (ee) of more than 80% using L-Val-L-Val as the peptide catalyst in sugar synthesis (in particular D-erythrose) via self-condensation of glycol aldehyde. [Pg.103]

Lemer (29) reported a simple synthesis of L-erythrose that involves 2,3-di-O-isopropylidene-D-gulono-1,4-lactone (7b) as a key intermediate. Reduction of the lactone group of 7b with sodium borohydride, followed by periodate oxidation of the L-glucitol derivative, afforded 2,3-O-isopropy-lidene-L-erythrose. The free sugar may be readily obtained by acidic hydrolysis of the latter. [Pg.130]

The borohydride reduction-periodate cleavage applied to 2,3-O-isopro-pylidene-D-ribono- 1,4-lactone (16a) led to L-erythrose (30). The method was also employed (31) for the synthesis of D-erythrose, starting from an Obenzylidene-D-ribonolactone. However, in this case, the structural assignments for the intermediate compounds must be revised, as the starting material formulated as 3,5-O-benzylidene-D-ribono-1,4-lactone (2) was, as discussed previously in this section, the 3,4-0-benzylidene-D-ribono-1,5-lactone (3a). Therefore, the correct structure for the product described as 3,5-O-benzylidene-D-ribitol (20, not isolated) would be 3,4-O-benzylidene-... [Pg.130]

Deoxy-araWno-heptulosonic acid 7-phosphate (10) is a metabolic intermediate before shikimic acid in the biosynthetic pathway to aromatic amino-acids in bacteria and plants. While (10) is formed enzymically from erythrose 4-phosphate (11) and phosphoenol pyruvate, a one-step chemical synthesis from (11) and oxalacetate has now been published.36 The synthesis takes place at room temperature and neutral pH... [Pg.137]

We have extended our work on a new synthesis of the antiprotozoal antibiotic anisomycin to the necine bases of the pyrrolizidine alkaloids, in particular retronecine and crotanecine. The key intermediate, (2R,3S,4R)-2-(alkoxy-carbonylmethyl)-3,4—isopropylidenedioxypyrrolidine, has been prepared by three distinct routes from D-ribose and g-erythrose, using reactions of high stereoselectivity. [Pg.107]

M. Ruiz, T. M. Ruanova, O. Blanco, F. Nunez, C. Pato, and V. Ojea, Diastereoselective synthesis of piperidine imino sugars using aldol additions of metalated bislactim ethers to threose and erythrose acetonides, J. Org. Chem., 73 (2008) 2240-2255. [Pg.298]

Alkaloid biosynthesis needs the substrate. Substrates are derivatives of the secondary metabolism building blocks the acetyl coenzyme A (acetyl-CoA), shikimic acid, mevalonic acid and 1-deoxyxylulose 5-phosphate (Figure 21). The synthesis of alkaloids starts from the acetate, shikimate, mevalonate and deoxyxylulose pathways. The acetyl coenzyme A pathway (acetate pathway) is the source of some alkaloids and their precursors (e.g., piperidine alkaloids or anthraniUc acid as aromatized CoA ester (antraniloyl-CoA)). Shikimic acid is a product of the glycolytic and pentose phosphate pathways, a construction facilitated by parts of phosphoenolpyruvate and erythrose 4-phosphate (Figure 21). The shikimic acid pathway is the source of such alkaloids as quinazoline, quinoline and acridine. [Pg.67]

Buchanan et al. (48) reported a new route to the synthesis of the chiral hydroxy-pyrrolidines 234 and 238 from D-erythrose (230) via an intramolecular cycloaddition of an azide with an alkene (Scheme 9.48). Wittig reaction of the acetonide 230 with (carbethoxyethylene)triphenylphosphorane gave the ( ) and (Z) alkenes 231 and 232. On conversion into the triflate followed by its reaction with KN3, the ( ) isomer 231 allowed the isolation of the triazoline 234 in 68% overall yield, which on treatment with sodium ethoxide afforded the diazo ester 235 in 86% yield. [Pg.651]

Pearson and Lin (52) developed an elegant approach to the synthesis of optically active ( )-swainsonine (247) from isopropylidene-D-erythrose (242) (Scheme 9.52). Wittig reaction of the acetonide 242 led to the (Z) alkene 252 in 86% yield. The chloro alcohol 252 was converted to the azide 253 in 76% yield, which subsequently underwent 1,3-dipolar cycloaddition, isomerization and hydroboration-oxidation to give the indolizidine 255 in 70% overall yield. Cleavage of the acetonide unit in 255 using 6 N HCl gave the target molecule 247 in 85% yield. [Pg.656]

Compounds 11 and 12 were utilized for the synthesis of DL-threose and DL-erythrose, respectively. [Pg.6]

In these tissues the cycle may operate as indicated in Fig. 17-8A with the C3 product also being used in biosynthesis. Furthermore, any of the products from C4 to C7 may be withdrawn in any desired amounts without disrupting the smooth operation of the cycle. For example, the C4 intermediate erythrose 4-P is required in synthesis of aromatic amino acids by bacteria and plants (but not in animals). Ribose 5-P is needed for formation of several amino acids and of nucleic acids by all organisms. In some circumstances the formation of ribose 5-P may be the only essential function for the pentose phosphate pathway.120... [Pg.964]

The six-carbon chain of ManNAc 6-P can be extended by three carbon atoms using an aldol-type condensation with a three-carbon fragment from PEP (Eq. 20-7, step c) to give N-acetylneuraminic acid (sialic acid).48 Tire nine-carbon chain of this molecule can cyclize to form a pair of anomers with 6-membered rings as shown in Eq. 20-7. In a similar manner, arabi-nose 5-P is converted to the 8-carbon 3-deoxy-D-manno-octulosonic acid (KDO) (Fig. 4-15), a component of the lipopolysaccharide of gram-negative bacteria (Fig. 8-30), and D-Erythrose 4-P is converted to 3-deoxy-D-arafrmo-heptulosonate 7-P, the first metabolite in the shikimate pathway of aromatic synthesis (Fig. 25-1).48a The arabinose-P used for KDO synthesis is formed by isomerization of D-ribulose 5-P from the pentose phosphate pathway, and erythrose 4-P arises from the same pathway. [Pg.1136]

Aromatic compounds arise in several ways. The major mute utilized by autotrophic organisms for synthesis of the aromatic amino acids, quinones, and tocopherols is the shikimate pathway. As outlined here, it starts with the glycolysis intermediate phosphoenolpyruvate (PEP) and erythrose 4-phosphate, a metabolite from the pentose phosphate pathway. Phenylalanine, tyrosine, and tryptophan are not only used for protein synthesis but are converted into a broad range of hormones, chromophores, alkaloids, and structural materials. In plants phenylalanine is deaminated to cinnamate which yields hundreds of secondary products. In another pathway ribose 5-phosphate is converted to pyrimidine and purine nucleotides and also to flavins, folates, molybdopterin, and many other pterin derivatives. [Pg.1420]

Good yields are obtained at all stages of this synthesis of 2-desoxy-D-ribose, and for preparative purposes Sowden167 claims that the isolation of intermediates is unnecessary. The method would be a valuable one for the preparation of 2-desoxy-D-ribose if D-erythrose were obtainable in a pure state in large quantities. Overend and coworkers1 8 have investigated various methods for the preparation in bulk of this tetrose from easily accessible materials, but a completely satisfactory method is still required. [Pg.75]

A new synthetic approach to D-ribose has recently been made by Sowden.43 In this procedure 4,6-benzylidene-D-glucose (X) was reduced catalytically to 4,6-benzylidene-D-glucitol (XI) which was then oxidized with sodium metaperiodate to 2,4-benzylidene-D-erythrose (XII). Condensation of this latter compound with nitromethane gave a mixture of epimeric, crystalline, substituted C-nitro alcohols, 3,5-benzylidene-1-desoxy-l-nitro-D-arabitol and 3,5-benzylidene-l-desoxy-l-nitro-D-ribitol (XIII). After separation, the appropriate isomer was hydrolyzed to 1-nitro-l-desoxy-D-ribitol (XIV) which, in the form of its sodium salt was decomposed directly to D-ribose (XV), isolated as its benzylphenyl-hydrazone. This synthesis is of interest in that it may be used to obtain D-ribose labeled at carbon 1 with C.14... [Pg.141]

The final reaction to be covered in this section is known as the Kiliani-Fischer synthesis. It is a method that converts an aldose to two diastereomeric aldoses that contain one more carbon than the original sugar. The Kiliani-Fischer synthesis is illustrated in the following reaction sequence, which shows the formation of the aldopentoses D-ribose and D-arabinose from the aldotetrose D-erythrose ... [Pg.1101]

Isopropylidene-D-erythronolactone and the corresponding lactol, 2,3-0-isopropylidene-D-erythrose are useful chiral synthons in the total synthesis of certain natural products such as the leukotrlenes.4 The lactol is readily available from the lactone, in excellent yield, by reduction with diisobutylalumlnum hydride.4 2,3-0-Isopropylidene-L-erythrose has been employed as the starting material in an enantioselective synthesis of (+)-15S-... [Pg.132]

Ruff degradation of D-arabinose gives D-erythrose. The Kiliani-Fischer synthesis converts D-erythrose to a mixture of D-arabinose and D-ribose. Draw out these reactions, and give the structure of D-ribose. [Pg.1127]


See other pages where Erythrose synthesis is mentioned: [Pg.88]    [Pg.140]    [Pg.140]    [Pg.467]    [Pg.230]    [Pg.261]    [Pg.130]    [Pg.327]    [Pg.162]    [Pg.973]    [Pg.70]    [Pg.481]    [Pg.150]    [Pg.346]    [Pg.8]    [Pg.32]    [Pg.43]    [Pg.386]    [Pg.2]    [Pg.316]    [Pg.133]    [Pg.24]    [Pg.96]    [Pg.1106]    [Pg.1127]   
See also in sourсe #XX -- [ Pg.40 , Pg.50 , Pg.121 , Pg.130 ]




SEARCH



Erythrose

Synthesis from erythrose

© 2024 chempedia.info