Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium constants states

This factor can be obtained from the vibration partition function which was omitted from the expression for the equilibrium constant stated above and is, for one degree of vibrational freedom where vq is the vibrational frequency in the lowest energy state. [Pg.49]

The application of the techniques discussed above to the binding of guests to DNA or cyclodextrins (CDs) is described below. The intent of this section is not to provide an exhaustive review and analysis of the available data, but the objective is to use examples to show how the different techniques were employed in studies of supramolecular dynamics. The values for rate and equilibrium constants stated below... [Pg.185]

The most common formulation is in terms of the law of mass action, which leads to the equilibrium constants, stated in terms of the activities and stoichiometric coefficients of the reactants and products. [Pg.239]

VPLQFT is a computer program for correlating binary vapor-liquid equilibrium (VLE) data at low to moderate pressures. For such binary mixtures, the truncated virial equation of state is used to correct for vapor-phase nonidealities, except for mixtures containing organic acids where the "chemical" theory is used. The Hayden-0 Connell (1975) correlation gives either the second virial coefficients or the dimerization equilibrium constants, as required. [Pg.211]

IF BINARY SYSTEM CONTAINS NO ORGANIC ACIDS. THE SECOND VIRTAL coefficients ARE USED IN A VOLUME EXPLICIT EQUATION OF STATE TO CALCULATE THE FUGACITY COEFFICIENTS. FOR ORGANIC ACIDS FUGACITY COEFFICIENTS ARE PREDICTED FROM THE CHEMICAL THEORY FOR NQN-IOEALITY WITH EQUILIBRIUM CONSTANTS OBTAINED from METASTABLE. BOUND. ANO CHEMICAL CONTRIBUTIONS TO THE SECOND VIRIAL COEFFICIENTS. [Pg.266]

Soave, G. (1972), Equilibrium constants from a modified Redlich-Kwong equation of state . Chem. Eng. Sci., Vol. 27, p. 1197. [Pg.459]

The value of the standard free energy AG depends on the choice of reference state, as does the equilibrium constant. Thus it would be safer to write the equilibrium constant K for a gaseous reaction as... [Pg.365]

Conformational free energy simulations are being widely used in modeling of complex molecular systems [1]. Recent examples of applications include study of torsions in n-butane [2] and peptide sidechains [3, 4], as well as aggregation of methane [5] and a helix bundle protein in water [6]. Calculating free energy differences between molecular states is valuable because they are observable thermodynamic quantities, related to equilibrium constants and... [Pg.163]

The best-known equation of the type mentioned is, of course, Hammett s equation. It correlates, with considerable precision, rate and equilibrium constants for a large number of reactions occurring in the side chains of m- and p-substituted aromatic compounds, but fails badly for electrophilic substitution into the aromatic ring (except at wi-positions) and for certain reactions in side chains in which there is considerable mesomeric interaction between the side chain and the ring during the course of reaction. This failure arises because Hammett s original model reaction (the ionization of substituted benzoic acids) does not take account of the direct resonance interactions between a substituent and the site of reaction. This sort of interaction in the electrophilic substitutions of anisole is depicted in the following resonance structures, which show the transition state to be stabilized by direct resonance with the substituent ... [Pg.137]

The standard-state electrochemical potential, E°, provides an alternative way of expressing the equilibrium constant for a redox reaction. Since a reaction at equilibrium has a AG of zero, the electrochemical potential, E, also must be zero. Substituting into equation 6.24 and rearranging shows that... [Pg.147]

Balance the following redox reactions, and calculate the standard-state potential and the equilibrium constant for each. Assume that the [H3O+] is 1 M for acidic solutions, and that the [OH ] is 1 M for basic solutions. [Pg.177]

To determine the equilibrium constant s value, we prepare a solution in which the reaction exists in a state of equilibrium and determine the equilibrium concentration of H3O+, HIn, and Im. The concentration of H3O+ is easily determined by measuring... [Pg.407]

Preparation and chemistry of chromium compounds can be found ia several standard reference books and advanced texts (7,11,12,14). Standard reduction potentials for select chromium species are given ia Table 2 whereas Table 3 is a summary of hydrolysis, complex formation, or other equilibrium constants for oxidation states II, III, and VI. [Pg.133]

From a general point of view, the tautomeric studies can be divided into 12 areas (Figure 20) depending on the migrating entity (proton or other groups, alkyl, acyl, metals. ..), the physical state of the study (solid, solution or gas phase) and the thermodynamic (equilibrium constants) or the kinetic (isomerization rates) approach. [Pg.211]

Together with pyridones, the tautomerism of pyrazolones has been studied most intensely and serves as a model for other work on tautomerism (76AHC(Sl)l). 1-Substituted pyrazolin-5-ones (78) can exist in three tautomeric forms, classically known as CH (78a), (DH (78b) and NH (78c). In the vapour phase the CH tautomer predominates and in the solid state there is a strongly H-bonded mixture of OH and HN tautomers (Section 4.04.1.3.1). However, most studies of the tautomerism of pyrazolones correspond to the determination of equilibrium constants in solution (see Figure 20). [Pg.213]

Equilibrium Constants For practical application, Eq. (4-336) must be reformulated. The initial step is elimination of the in favor of fugacities. Equation (4-74) for species i in its standard state is subtracted from Eq. (4-77) for species i in the equilibrium mixture, giving... [Pg.542]

In some earlier work the shift reaction was assumed always at equilibrium. Fiigacities were calculated with the SRK and Peng-Robinson equations of state, and correlations were made of the equilibrium constants. [Pg.2079]

A more general, and for the moment, less detailed description of the progress of chemical reactions, was developed in the transition state theory of kinetics. This approach considers tire reacting molecules at the point of collision to form a complex intermediate molecule before the final products are formed. This molecular species is assumed to be in thermodynamic equilibrium with the reactant species. An equilibrium constant can therefore be described for the activation process, and this, in turn, can be related to a Gibbs energy of activation ... [Pg.47]

The equilibrium constant can be determined at any temperature from standard state information on reactants and product. Considering the synthesis of NH3, the equilibrium conversion can be determined for a stoichiometric feed of Hj and Nj, at the total pressure. These conversions are determined by the number of moles of each species against conversion X by taking as a basis, 1 mole of N2. [Pg.481]

This system is capable of attaining thermodynamic equilibrium with respect to all states. [This statement is amplified in Section 3.3, p. 125.] The equilibrium constants are defined... [Pg.99]

The irreversible step is irrelevant to the following argument, which is based on the equilibrium state. Proceeding to define equilibrium constants as Ki = k,/k i = [IH]/[ImH][L] and so on, we obtain the identity... [Pg.127]

The numerical values of AG and A5 depend upon the choice of standard states in solution kinetics the molar concentration scale is usually used. Notice (Eq. 5-43) that in transition state theory the temperature dependence of the rate constant is accounted for principally by the temperature dependence of an equilibrium constant. [Pg.208]

The formulation of transition state theory has been in terms of reactant and transition state concentrations let us now define an equilibrium constant in terms of activities. [Pg.209]

The extension to rates draws on the equilibrium assumption of transition state theory to yield the analogous result, with rate constants replacing the equilibrium constants of Eq. (6-96). Kresge has generalized this argument, the result being... [Pg.302]

A further complication arises with Ingold s suggestion" that both the inductive and resonance effects are composed of initial state equilibrium displacements that reveal themselves in equilibrium properties like dipole moments and equilibrium constants and of time-dependent displacements produced during reaction by the approach of an attacking reagent, observed rate effects being resultants of both types of electronic effects. Hammett, however, claims that it is not necessary or possible to make this distinction. [Pg.323]

Enthalpy changes for biochemical processes can be determined experimentally by measuring the heat absorbed (or given off) by the process in a calorimeter (Figure 3.2). Alternatively, for any process B at equilibrium, the standard-state enthalpy change for the process can be determined from the temperature dependence of the equilibrium constant ... [Pg.58]

In any of these forms, this relationship allows the standard-state free energy change for any process to be determined if the equilibrium constant is known. More importantly, it states that the equilibrium established for a reaction in solution is a function of the standard-state free energy change for the process. That is, AG° is another way of writing an equilibrium constant. [Pg.62]

For biochemical reactions in which hydrogen ions (H ) are consumed or produced, the usual definition of the standard state is awkward. Standard state for the ion is 1 M, which corresponds to pH 0. At this pH, nearly all enzymes would be denatured, and biological reactions could not occur. It makes more sense to use free energies and equilibrium constants determined at pH 7. Biochemists have thus adopted a modified standard state, designated with prime ( ) symbols, as in AG°, AH°, and so on. For values determined... [Pg.64]


See other pages where Equilibrium constants states is mentioned: [Pg.706]    [Pg.833]    [Pg.883]    [Pg.1012]    [Pg.2822]    [Pg.3055]    [Pg.18]    [Pg.197]    [Pg.205]    [Pg.133]    [Pg.20]    [Pg.147]    [Pg.147]    [Pg.390]    [Pg.36]    [Pg.267]    [Pg.716]    [Pg.207]    [Pg.211]    [Pg.351]   
See also in sourсe #XX -- [ Pg.662 ]




SEARCH



Equilibrium Rate Constants. Transition-State Method

Equilibrium constant standard state

Equilibrium constant steady state kinetics

Equilibrium constant transition state

Equilibrium constants from a modified Redlich-Kwong equation of state

Equilibrium state

Standard-state Free Energies, Equilibrium Constants, and Concentrations

© 2024 chempedia.info