Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibrium constants prediction

Property Activity PAR Bioaccumulation vs. octanol-water partition coefficient, log Kow (LFERs are a type of PAR predictor property = equilibrium constant predicted activity = reaction rate constant)... [Pg.115]

IF BINARY SYSTEM CONTAINS NO ORGANIC ACIDS. THE SECOND VIRTAL coefficients ARE USED IN A VOLUME EXPLICIT EQUATION OF STATE TO CALCULATE THE FUGACITY COEFFICIENTS. FOR ORGANIC ACIDS FUGACITY COEFFICIENTS ARE PREDICTED FROM THE CHEMICAL THEORY FOR NQN-IOEALITY WITH EQUILIBRIUM CONSTANTS OBTAINED from METASTABLE. BOUND. ANO CHEMICAL CONTRIBUTIONS TO THE SECOND VIRIAL COEFFICIENTS. [Pg.266]

Figure B2.5.7 shows the absorption traces of the methyl radical absorption as a fiinction of tune. At the time resolution considered, the appearance of CFt is practically instantaneous. Subsequently, CFl disappears by recombination (equation B2.5.28). At temperatures below 1500 K, the equilibrium concentration of CFt is negligible compared witli (left-hand trace) the recombination is complete. At temperatures above 1500 K (right-hand trace) the equilibrium concentration of CFt is appreciable, and thus the teclmique allows the detennination of botli the equilibrium constant and the recombination rate [54, M]. This experiment resolved a famous controversy on the temperature dependence of the recombination rate of methyl radicals. Wliile standard RRKM theories [, ] predicted an increase of the high-pressure recombination rate coefficient /r (7) by a factor of 10-30 between 300 K and 1400 K, the statistical-adiabatic-chaunel model predicts a... Figure B2.5.7 shows the absorption traces of the methyl radical absorption as a fiinction of tune. At the time resolution considered, the appearance of CFt is practically instantaneous. Subsequently, CFl disappears by recombination (equation B2.5.28). At temperatures below 1500 K, the equilibrium concentration of CFt is negligible compared witli (left-hand trace) the recombination is complete. At temperatures above 1500 K (right-hand trace) the equilibrium concentration of CFt is appreciable, and thus the teclmique allows the detennination of botli the equilibrium constant and the recombination rate [54, M]. This experiment resolved a famous controversy on the temperature dependence of the recombination rate of methyl radicals. Wliile standard RRKM theories [, ] predicted an increase of the high-pressure recombination rate coefficient /r (7) by a factor of 10-30 between 300 K and 1400 K, the statistical-adiabatic-chaunel model predicts a...
When R = H, in all the known examples, the 3-substituted tautomer (129a) predominates, with the possible exception of 3(5)-methylpyrazole (R = Me, R = H) in which the 5-methyl tautomer slightly predominates in HMPT solution at -17 °C (54%) (77JOC659) (Section 4.04.1.3.4). For the general case when R = or a dependence of the form logjRTT = <2 Za.s cTi + b Xa.s (Tr, with a>0,b <0 and a> b, has been proposed for solutions in dipolar aprotic solvents (790MR( 12)587). The equation predicts that the 5-trimethylsilyl tautomer is more stable than the 3-trimethylsilylpyrazole, since experimental work has to be done to understand the influence of the substituents on the equilibrium constant which is solvent dependent (78T2259). There is no problem with indazole since the IH tautomer is always the more stable (83H(20)1713). [Pg.211]

If the composition of the stream is known, the hydrate temperature can be predicted using vapor-solid (hydrate) equilibrium constants. The basic equation for this prediction is ... [Pg.94]

A prediction of AE /AEq to within 0.1 kcal/mol may produce a AG /AGq accurate to maybe 0.2 kcal/mol. This corresponds to a factor of 1.4 error (at T = 300 K) in the rate/equilibrium constant, which is poor compared to what is routinely obtained by experimental techniques. Calculating AG /AGq to within 1 kcal/mol is still only possible for fairly small systems. This corresponds to predicting the absolute rate constant, or the equilibrium distribution, to within a factor of... [Pg.306]

Molecular orbital calculations have been used to estimate equilibrium constants, although up to the present these attempts have not met with much success. Using calculations of this type, 2- and 4-hydroxypyridine 1-oxide were predicted to be more stable than 1-hydroxypyrid-2- and -4-one by ca. 20 kcal/mole, which corresponds to a ratio of ca. 10 between the forms. It was later shown experimentally that, at least in the series of 4-substituted compounds, there is very little energy difference between the forms and that the ratio between them is about unity. Molecular orbital calculations for... [Pg.334]

One interesting problem frequently recurring in heterocyclic chemistry, particularly with respect to nitrogen heterocycles, is tautomeric equilibria. Too many methods are available for the elucidation of equilibrium positions and tautomeric equilibrium constants (Kj) to adequately review the whole question here. However, the Hammett equation provides one independent method this method has the advantage that it can be used to predict the equilibrium position and to estimate the equilibrium constant, even in cases where the equilibrium position is so far to one side or the other that experimental determination of the concentration of the minor component is impossible. The entire method will be illustrated using nicotinic acid as an example but is, of course, completely general. [Pg.256]

The determination of ArG° for a chemical reaction is very useful in predicting the course of the reaction. Qualitatively, we will show in Chapter 5 that with ArC°<0, the reaction is spontaneous, at least when products and reactants are in their standard state condition. Quantitatively, we will see in Chapter 9 that ArG° can be used to calculate the equilibrium constant for the reaction, from which the final equilibrium conditions can be determined. [Pg.196]

Chapters 7 to 9 apply the thermodynamic relationships to mixtures, to phase equilibria, and to chemical equilibrium. In Chapter 7, both nonelectrolyte and electrolyte solutions are described, including the properties of ideal mixtures. The Debye-Hiickel theory is developed and applied to the electrolyte solutions. Thermal properties and osmotic pressure are also described. In Chapter 8, the principles of phase equilibria of pure substances and of mixtures are presented. The phase rule, Clapeyron equation, and phase diagrams are used extensively in the description of representative systems. Chapter 9 uses thermodynamics to describe chemical equilibrium. The equilibrium constant and its relationship to pressure, temperature, and activity is developed, as are the basic equations that apply to electrochemical cells. Examples are given that demonstrate the use of thermodynamics in predicting equilibrium conditions and cell voltages. [Pg.686]

The experimental constant ki is either K k or K k. Now each of the equilibrium constants has a predictable ionic strength effect. If the Debye-Hiickel equation is applied to them, we have... [Pg.212]

Figure 6.18 shows how the model predicts the four main types of r vs O global behaviour (electrophobic, electrophilic, volcano, inverted volcano) for fixed XD and IA, Pd and pA, by just varying the adsorption equilibrium constants kD and kA. Note that in Figure 6.18 and till the end of this chapter we omit the units of Pd and pA (e.g. kPa) and kD,kA (e.g. kPa 1), unless we refer to experimental data. This is because one is free to use any consistent set of units, since only the dimensionless products kApA and kDpD enter the calculations. [Pg.318]

Example 9.4 deals with a system at equilibrium, but suppose the reaction mixture has arbitrary concentrations. How can we tell whether it will have a tendency to form more products or to decompose into reactants To answer this question, we first need the equilibrium constant. We may have to determine it experimentally or calculate it from standard Gibbs free energy data. Then we calculate the reaction quotient, Q, from the actual composition of the reaction mixture, as described in Section 9.3. To predict whether a particular mixture of reactants and products will rend to produce more products or more reactants, we compare Q with K ... [Pg.489]

We have seen that the value of an equilibrium constant tells us whether we can expect a high or low concentration of product at equilibrium. The constant also allows us to predict the spontaneous direction of reaction in a reaction mixture of any composition. In the following three sections, we see how to express the equilibrium constant in terms of molar concentrations of gases as well as partial pressures and how to predict the equilibrium composition of a reaction mixture, given the value of the equilibrium constant for the reaction. Such information is critical to the success of many industrial processes and is fundamental to the discussion of acids and bases in the following chapters. [Pg.490]

EXAMPLE 9.13 Predicting the value of an equilibrium constant at a different temperature... [Pg.504]

The rest of this chapter is a variation on a theme introduced in Chapter 9 the use of equilibrium constants to calculate the equilibrium composition of solutions of acids, bases, and salts. We shall see how to predict the pH of solutions of weak acids and bases and how to calculate the extent of deprotonation of a weak acid and the extent of protonation of a weak base. We shall also see how to calculate the pH of a solution of a salt in which the cation or anion of the salt may itself be a weak acid or base. [Pg.534]

Up to this point, we have focused on aqueous equilibria involving proton transfer. Now we apply the same principles to the equilibrium that exists between a solid salt and its dissolved ions in a saturated solution. We can use the equilibrium constant for the dissolution of a substance to predict the solubility of a salt and to control precipitate formation. These methods are used in the laboratory to separate and analyze mixtures of salts. They also have important practical applications in municipal wastewater treatment, the extraction of minerals from seawater, the formation and loss of bones and teeth, and the global carbon cycle. [Pg.586]

Sometimes it is important to know under what conditions a precipitate will form. For example, if we are analyzing a mixture of ions, we may want to precipitate only one type of ion to separate it from the mixture. In Section 9.5, we saw how to predict the direction in which a reaction will take place by comparing the values of J, the reaction quotient, and K, the equilibrium constant. Exactly the same techniques can be used to decide whether a precipitate is likely to form when two electrolyte solutions are mixed. In this case, the equilibrium constant is the solubility product, Ksp, and the reaction quotient is denoted Qsp. Precipitation occurs when Qsp is greater than Ksp (Fig. 11.17). [Pg.590]

From such crude data as are to be found in the literature we can calculate approximate values of the equilibrium constants, and hence of the free energies of dissociation for the various hexaarylethanes. From our quantum-mechanical treatment, on the other hand, we obtain only the heats of dissociation, for which, except in the single case of hexaphenylethane, we have no experimental data. Thus, in order that we may compare our results with those of experiment, we must make the plausible assumption that the entropies of dissociation vary only slightly from ethane to ethane. Then at a given temperature the heats of dissociation run parallel to the free energies and can be used instead of the latter in predicting the relative degrees of dissociation of the different molecules. [Pg.122]

The distribution of metals between dissolved and particulate phases in aquatic systems is governed by a competition between precipitation and adsorption (and transport as particles) versus dissolution and formation of soluble complexes (and transport in the solution phase). A great deal is known about the thermodynamics of these reactions, and in many cases it is possible to explain or predict semi-quantita-tively the equilibrium speciation of a metal in an environmental system. Predictions of complete speciation of the metal are often limited by inadequate information on chemical composition, equilibrium constants, and reaction rates. [Pg.415]

For nonideal solutions, the thermodynamic equilibrium constant, as given by Equation (7.29), is fundamental and Ei mettc should be reconciled to it even though the exponents in Equation (7.28) may be different than the stoichiometric coefficients. As a practical matter, the equilibrium composition of nonideal solutions is usually found by running reactions to completion rather than by thermodynamic calculations, but they can also be predicted using generalized correlations. [Pg.237]

Later we shall see how fundamental quantities such as /i can be estimated from first principles (via a basic knowledge of the molecule such as its molecular weight, rotational constants etc.) and how the equilibrium constant is derived by requiring the chemical potentials of the interacting species to add up to zero as in Eq. (20). The above equations relate kinetics to thermodynamics and enable one to predict the rate constant for a reaction in the forward direction if the rate constant for the reverse reaction as well as thermodynamic data is known. [Pg.29]

The rate of the ammonia production can now be predicted if we can estimate all of the participating equilibrium constants and k. Where possible, one should take experimental values for the different constants. For instance, it is possible to measure the uptake of atomic nitrogen on the Fe or Ru surface and thereby determine... [Pg.293]

Table 10.4 lists the rate parameters for the elementary steps of the CO + NO reaction in the limit of zero coverage. Parameters such as those listed in Tab. 10.4 form the highly desirable input for modeling overall reaction mechanisms. In addition, elementary rate parameters can be compared to calculations on the basis of the theories outlined in Chapters 3 and 6. In this way the kinetic parameters of elementary reaction steps provide, through spectroscopy and computational chemistry, a link between the intramolecular properties of adsorbed reactants and their reactivity Statistical thermodynamics furnishes the theoretical framework to describe how equilibrium constants and reaction rate constants depend on the partition functions of vibration and rotation. Thus, spectroscopy studies of adsorbed reactants and intermediates provide the input for computing equilibrium constants, while calculations on the transition states of reaction pathways, starting from structurally, electronically and vibrationally well-characterized ground states, enable the prediction of kinetic parameters. [Pg.389]

Le Chatelier s principle demonstrates the effect of disturbances on chemical equilibrium. Le Chatelier s principle can also help predict whether or not disturbances will affect the equilibrium constant. None of these will affect the equilibrium constant EXCEPT the —... [Pg.36]

Table 1.2 gives a representative sampling of eqnilibrinm constants for additions to varions types of carbonyl compounds. Notice that there are nnmerons gaps in the table. This means that mnch remains to be done in the stndy of carbonyl addition reactions. In trying to devise schemes for predicting the eqnilibrinm constants for snch reactions, the scarcity of experimental data is a serions handicap. There are many fewer equilibrium constants for additions to imines, and even fewer cases where... [Pg.10]

In this chapter, the definitions used by Perrin in his book on pA a prediction (which also includes a very convenient compilation of o values) will be used. One must be alert to the importance of the number of hydrogens directly attached to the carbonyl carbon several groups have pointed out that aldehydes and ketones give separate but parallel lines, with formaldehyde displaced by the same amount again. What this means is that given one equilibrium constant for an aldehyde (or ketone) one may estimate the equilibrium constant for other aldehydes (or ketones) from this value and p for the addition using a value from experiment, if available, or estimated if necessary. This assumes that there is no large difference in steric effects between the reference compound and the unknown of interest. [Pg.12]


See other pages where Equilibrium constants prediction is mentioned: [Pg.400]    [Pg.601]    [Pg.400]    [Pg.601]    [Pg.2951]    [Pg.45]    [Pg.45]    [Pg.307]    [Pg.260]    [Pg.16]    [Pg.354]    [Pg.507]    [Pg.504]    [Pg.505]    [Pg.505]    [Pg.531]    [Pg.19]    [Pg.201]    [Pg.414]    [Pg.214]    [Pg.78]    [Pg.14]    [Pg.247]    [Pg.274]    [Pg.56]    [Pg.109]   
See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Equilibrium Predictions

Equilibrium constant prediction by Hammett equation

Equilibrium constant spontaneous change, prediction

Equilibrium predict

© 2024 chempedia.info