Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibria transesterification

Several additional points should be made. First, although oxygen esters usually have lower group-transfer potentials than thiol esters, the O—acyl bonds in acylcarnitines have high group-transfer potentials, and the transesterification reactions mediated by the acyl transferases have equilibrium constants close to 1. Second, note that eukaryotic cells maintain separate pools of CoA in the mitochondria and in the cytosol. The cytosolic pool is utilized principally in fatty acid biosynthesis (Chapter 25), and the mitochondrial pool is important in the oxidation of fatty acids and pyruvate, as well as some amino acids. [Pg.783]

Ester alcoholysis (transesterification) in organic media is an equilibrium reaction and must be shifted in the desired direction. For example, Bornscheuer and coworkers [61] reported the resolution of ibuprofen vinyl ester by transesterification tvith n-hexanol in the presence of CAL-B. The vinyl alcohol generated during the reaction tautomerizes to acetaldehyde, thus making the reaction irreversible, as illustrated in Figure 6.14. [Pg.140]

Transesterification is catalyzed by acids or bases, or performed under neutral conditions. It is an equilibrium reaction and must be shifted in the desired direction. In many cases, low-boiling esters can be converted to higher boiling ones by the distillation of the lower boiling alcohol as fast as it is formed. Reagents used to catalyze transesterification include In/l2, Montmorillonite KlOclay, Ti(OEt)4, Cu(N03)2, which with ethyl acetate is elective for primaiy alcohols, ... [Pg.486]

One of the most important characteristics of IL is its wide temperature range for the liquid phase with no vapor pressure, so next we tested the lipase-catalyzed reaction under reduced pressure. It is known that usual methyl esters are not suitable for lipase-catalyzed transesterification as acyl donors because reverse reaction with produced methanol takes place. However, we can avoid such difficulty when the reaction is carried out under reduced pressure even if methyl esters are used as the acyl donor, because the produced methanol is removed immediately from the reaction mixture and thus the reaction equilibrium goes through to produce the desired product. To realize this idea, proper choice of the acyl donor ester was very important. The desired reaction was accomplished using methyl phenylth-ioacetate as acyl donor. Various methyl esters can also be used as acyl donor for these reactions methyl nonanoate was also recommended and efficient optical resolution was accomplished. Using our system, we demonstrated the completely recyclable use of lipase. The transesterification took place smoothly under reduced pressure at 10 Torr at 40°C when 0.5 equivalent of methyl phenylthioacetate was used as acyl donor, and we were able to obtain this compound in optically pure form. Five repetitions of this process showed no drop in the reaction rate (Fig. 4). Recently Kato reported nice additional examples of lipase-catalyzed reaction based on the same idea that CAL-B-catalyzed esterification or amidation of carboxylic acid was accomplished under reduced pressure conditions. ... [Pg.7]

Alkyl esters often show low reactivity for lipase-catalyzed transesterifications with alcohols. Therefore, it is difficult to obtain high molecular weight polyesters by lipase-catalyzed polycondensation of dialkyl esters with glycols. The molecular weight greatly improved by polymerization under vacuum to remove the formed alcohols, leading to a shift of equilibrium toward the product polymer the polyester with molecular weight of 2 x 10" was obtained by the lipase MM-catalyzed polymerization of sebacic acid and 1,4-butanediol in diphenyl ether or veratrole under reduced pressure. ... [Pg.213]

An example of solid-phase microwave synthesis where the use of open-vessel technology is essential is shown in Scheme 4.10. The transesterification of /3-keto esters with a supported alcohol (Wang resin) is carried out in 1,2-dichlorobenzene (DCB) as a solvent under controlled microwave heating conditions [22], The temperature is kept constant at 170 °C, ca. 10 degrees below the boiling point of the solvent, thereby allowing safe processing in the microwave cavity. In order to achieve full conversion to the desired resin-bound /3-keto ester, it is essential that the methanol formed can be removed from the equilibrium [22]. [Pg.63]

Esterification is the first step in PET synthesis but also occurs during melt-phase polycondensation, SSP, and extrusion processes due to the significant formation of carboxyl end groups by polymer degradation. As an equilibrium reaction, esterification is always accompanied by the reverse reaction being hydrolysis. In industrial esterification reactors, esterification and transesterification proceed simultaneously, and thus a complex reaction scheme with parallel and serial equilibrium reactions has to be considered. In addition, the esterification process involves three phases, i.e. solid TPA, a homogeneous liquid phase and the gas phase. The respective phase equilibria will be discussed below in Section 3.1. [Pg.41]

Esterification, hydrolysis, transesterification and glycolysis have equilibrium constants close to unity and proceed via an AAc2 mechanism (Figure 2.3) [9, 18],... [Pg.43]

In Figure 2.4, data for the equilibrium constants of esterification/hydrolysis and transesterification/glycolysis from different publications [21-24] are compared. In addition, the equilibrium constant data for the reaction TPA + 2EG BHET + 2W, as calculated by a Gibbs reactor model included in the commercial process simulator Chemcad, are also shown. The equilibrium constants for the respective reactions show the same tendency, although the correspondence is not as good as required for a reliable rigorous modelling of the esterification process. The thermodynamic data, as well as the dependency of the equilibrium constants on temperature, indicate that the esterification reactions of the model compounds are moderately endothermic. The transesterification process is a moderately exothermic reaction. [Pg.43]

Transesterification is the main reaction of PET polycondensation in both the melt phase and the solid state. It is the dominant reaction in the second and subsequent stages of PET production, but also occurs to a significant extent during esterification. As mentioned above, polycondensation is an equilibrium reaction and the reverse reaction is glycolysis. The temperature-dependent equilibrium constant of transesterification has already been discussed in Section 2.1. The polycondensation process in the melt phase involves a gas phase and a homogeneous liquid phase, while the SSP process involves a gas phase and two solid phases. The respective phase equilibria, which have to be considered for process modelling, will be discussed below in Section 3.1. [Pg.48]

Later, Fontana [43] performed experiments on transesterification and reinterpreted Challa s results. He concluded that the value of the polycondensation equilibrium constant is close to 0.5, being independent of temperature or degree of polycondensation and that the normal Flory-Schuz distribution does hold in the PET system. In Figure 2.8, the polycondensation equilibrium constant K from different sources [22, 43, 44] is shown as a function of the average degree of polycondensation, Pn. [Pg.49]

Fontana, C. M., Poly condensation equilibrium and the kinetics of catalyzed transesterification in the formation of polyethylene terephthalate, J. Polym. Sci., Part A-l, 6, 2343-2358 (1968). [Pg.107]

The understanding of the SSP process is based on the mechanism of polyester synthesis. Polycondensation in the molten (melt) state (MPPC) is a chemical equilibrium reaction governed by classical kinetic and thermodynamic parameters. Rapid removal of volatile side products as well as the influence of temperature, time and catalysts are of essential importance. In the later stages of polycondensation, the increase in the degree of polymerization (DP) is restricted by the diffusion of volatile reaction products. Additionally, competing reactions such as inter- and intramolecular esterification and transesterification put a limit to the DP (Figure 5.1). [Pg.197]

The transesterification of triglycerides with methanol is a simple and straightforward process. It is commercially practiced worldwide in the production of FAMEs, which have become popular as a replacement for diesel known as biodiesel . The process consists of three separate equilibrium reactions that can be catalyzed by both acids and bases. (4) The overall process is described in Figure 3. Phase separation of the glycerin is the predominant driving force for this process. [Pg.379]

The methanolysis catalyst is generally a base such as potassium carbonate, since the base catalyzed transesterification is generally lower in energy(5). For the transesterification of the hydroxymethylated fatty esters, however, a Lewis acid (stannous 2-ethylhexanoate) is employed. Although this catalyst requires higher temperatures to achieve rapid equilibrium, it has the benefit of not requiring removal... [Pg.381]

As mentioned in 2.2.2 a great problem with transesterification is that the reaction will become reversible and the equilibrium constant will become important. The enantiomer that reacts fastest in the forward direction will also react fastest in the... [Pg.36]

Anionic polymerization of -caprolactone has been studied in several laboratories and it was found that considerable amounts of oligomers were found as by-products.— — We have studied the formation of oligomers in the anionic polymerization of 6-capro-lactone by gpc technique.A In view of the very facile intra- and intermolecular transesterification reactions in this system- -, the product distribution seems very interesting to check the validity of the thermodynamic equilibrium. [Pg.199]

The Hines64 showed that, as acids, ethanol, isopropyl alcohol, and tert-butyl alcohol are weaker than water, whereas methanol is stronger. The influence of the solvent could thus be interpreted in terms of equation 1. In methanol, the equilibrium would be more displaced to the right, and the rate of simple ammonolysis and transesterification would be enhanced, with concomitant decrease in the yields of amido sugars. In water (for the ammonolysis of sugar acetates) and in alcohols other than methanol, the equilibrium would be displaced to the left and this would allow operation of the orthoester mechanism a better chance. The isolation, from the reaction in isopropyl alcohol, of mono-O-benzoylated bis(benzamido)alditols, could also be explained on this basis. [Pg.102]


See other pages where Equilibria transesterification is mentioned: [Pg.5977]    [Pg.532]    [Pg.59]    [Pg.102]    [Pg.150]    [Pg.239]    [Pg.241]    [Pg.229]    [Pg.285]    [Pg.219]    [Pg.52]    [Pg.153]    [Pg.239]    [Pg.241]    [Pg.17]    [Pg.254]    [Pg.208]    [Pg.330]    [Pg.186]    [Pg.224]    [Pg.67]    [Pg.38]    [Pg.54]    [Pg.334]    [Pg.335]    [Pg.331]    [Pg.207]    [Pg.33]    [Pg.397]    [Pg.215]    [Pg.337]    [Pg.338]    [Pg.349]   
See also in sourсe #XX -- [ Pg.150 ]




SEARCH



Transesterifications

© 2024 chempedia.info