Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Melt Phase Polycondensation

Esterification is the first step in PET synthesis but also occurs during melt-phase polycondensation, SSP, and extrusion processes due to the significant formation of carboxyl end groups by polymer degradation. As an equilibrium reaction, esterification is always accompanied by the reverse reaction being hydrolysis. In industrial esterification reactors, esterification and transesterification proceed simultaneously, and thus a complex reaction scheme with parallel and serial equilibrium reactions has to be considered. In addition, the esterification process involves three phases, i.e. solid TPA, a homogeneous liquid phase and the gas phase. The respective phase equilibria will be discussed below in Section 3.1. [Pg.41]

Transesterification is the main reaction of PET polycondensation in both the melt phase and the solid state. It is the dominant reaction in the second and subsequent stages of PET production, but also occurs to a significant extent during esterification. As mentioned above, polycondensation is an equilibrium reaction and the reverse reaction is glycolysis. The temperature-dependent equilibrium constant of transesterification has already been discussed in Section 2.1. The polycondensation process in the melt phase involves a gas phase and a homogeneous liquid phase, while the SSP process involves a gas phase and two solid phases. The respective phase equilibria, which have to be considered for process modelling, will be discussed below in Section 3.1. [Pg.48]

In industrial PET synthesis, two or three phases are involved in every reaction step and mass transport within and between the phases plays a dominant role. The solubility of TPA in the complex mixture within the esterification reactor is critical. Esterification and melt-phase polycondensation take place in the liquid phase and volatile by-products have to be transferred to the gas phase. The effective removal of the volatile by-products from the reaction zone is essential to ensure high reaction rates and low concentrations of undesirable side products. This process includes diffusion of molecules through the bulk phase, as well as mass transfer through the liquid/gas interface. In solid-state polycondensation (SSP), the volatile by-products diffuse through the solid and traverse the solid/gas interface. The situation is further complicated by the co-existence of amorphous and crystalline phases within the solid particles. [Pg.72]

The phase equilibria of the most important compounds will be described in the following section. In the sections thereafter, we will treat mass transport in melt-phase polycondensation, as well as in solid-state polycondensation, and discuss the diffusion and mass transfer models that have been used for process simulation. [Pg.72]

In 1973, Bonatz et al. [101] finally showed by carefully performed experiments that the first reaction model proposed by Hoftyzer and van Krevelen [100] is correct. Thus, the polycondensation reaction (transesterihcation of bEG) takes place in the entire melt phase and the removal of EG is the rate-determining step for the overall polycondensation process. [Pg.76]

Currently, the accepted interpretation of experimental evidence is that the polycondensation of PET in industrial reactors is dominantly controlled by diffusion of EG in the melt phase [1, 6, 8, 102-110]. [Pg.76]

The chemistry of the solid-state polycondensation process is the same as that of melt-phase poly condensation. Most important are the transesterification/glycolysis and esterification/hydrolysis reactions, particularly, if the polymer has a high water concentration. Due to the low content of hydroxyl end groups, only minor amounts of DEG are formed and the thermal degradation of polymer chains is insignificant at the low temperatures of the SSP process. [Pg.85]

The second approach employs a detailed reaction model as well as the diffusion of EG in solid PET [98, 121-123], Commonly, a Fick diffusion concept is used, equivalent to the description of diffusion in the melt-phase polycondensation. Constant diffusion coefficients lying in the order of Deg, pet (220 °C) = 2-4 x 10 10 m2/s are used, as well as temperature-dependent diffusion coefficients, with an activation energy for the diffusion of approximately 124kJ/mol. [Pg.85]

To increase the PET molecular weight beyond 20 000 g/mol (IV = 0.64 dL/g) for bottle applications, with minimum generation of acetaldehyde and yellowing, a further polycondensation is performed in the solid state at low reaction temperatures of between 220 and 235 °C. The chemistry of the solid-state polycondensation (SSP) process is the same as that for melt-phase polycondensation. Mass-transport limitation and a very low transesterification rate cause the necessary residence time to increase from 60-180 minutes in the melt phase to... [Pg.89]

The continuous polycondensation process consists of four main process units, i.e. (1) slurry preparation vessel, (2) reaction unit, (3) vacuum system, and (4) distillation unit. The molar EG/TPA ratio is adjusted to an appropriate value between 1.05 and 1.15 in the slurry preparation vessel. In most industrial processes, the melt-phase reaction is performed in three up to six (or sometimes even more) continuous reactors in series. Commonly, one or two esterification... [Pg.93]

REACTOR DESIGN FOR CONTINUOUS MELT-PHASE POLYCONDENSATION... [Pg.98]

Polycondensation of highly viscous polyesters in the melt phase is limited. The removal of the volatile by-products becomes more difficult due to diffusion inhibited by the increased viscosity of higher-IV polyesters. In addition, undesirable side reactions due to thermal degradation impede the growth of the molecular chains. As a consequence, the reaction rate decreases and decomposition reactions dominate, thus resulting in a decrease in the melt viscosity [2], As it is able to address these limitations, SSP has become the method of choice and is therefore so popular. [Pg.196]

The processing of these prepolymers differs due to the prolonged reaction times during melt-phase polycondensation and the reduced thermal stabilities of these materials. The relatively low IV values of the prepolymers has to be increased by SSP under gentle conditions with the requirement for extremely long reaction times. [Pg.237]

Key words In situ infrared spectroscopy, stable free radical polymerization, free radical alternating polymerization, living anionic polymerization, melt phase polyester polycondensation... [Pg.9]


See other pages where Melt Phase Polycondensation is mentioned: [Pg.588]    [Pg.35]    [Pg.36]    [Pg.86]    [Pg.143]    [Pg.180]    [Pg.182]    [Pg.199]    [Pg.237]    [Pg.35]    [Pg.86]    [Pg.143]    [Pg.180]    [Pg.182]    [Pg.197]    [Pg.199]    [Pg.237]    [Pg.286]    [Pg.9]   
See also in sourсe #XX -- [ Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 , Pg.81 , Pg.82 , Pg.83 ]




SEARCH



Melt phase polyester polycondensation

Melt polycondensation

Reactor Design for Continuous Melt-phase Polycondensation

© 2024 chempedia.info