Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equilibria total concentrations

Chemical Limitations to Beer s Law Chemical deviations from Beer s law can occur when the absorbing species is involved in an equilibrium reaction. Consider, as an example, an analysis for the weak acid, HA. To construct a Beer s law calibration curve, several standards containing known total concentrations of HA, Cmt, are prepared and the absorbance of each is measured at the same wavelength. Since HA is a weak acid, it exists in equilibrium with its conjugate weak base, A ... [Pg.386]

Aqueous solutions buffered to a pH of 5.2 and containing known total concentrations of Zn + are prepared. A solution containing ammonium pyrrolidinecarbodithioate (APCD) is added along with methyl isobutyl ketone (MIBK). The mixture is shaken briefly and then placed on a rotary shaker table for 30 min. At the end of the extraction period the aqueous and organic phases are separated and the concentration of zinc in the aqueous layer determined by atomic absorption. The concentration of zinc in the organic phase is determined by difference and the equilibrium constant for the extraction calculated. [Pg.449]

As the molecular weight of H2SO4 is 98.078 it follows that 1 kg contains 10.196 mol hence the predominant ions are present to the extent of about 1 millimole per mole of H2SO4 and the total concentration of species in equilibrium with the parent acid is 4.16 millimole per mole. Many of the physical and chemical properties of anhydrous H2SO4 as a nonaqueous solvent stem from these equilibria. [Pg.711]

Dihydroxypteridine was expected to undergo hydration but, a priori, it was difficult to decide whether covalent hydration would occur across the 3,4- or the 7,8-position, or both. Kinetic and spectroscopic evidence now indicate that addition of water occurs much more rapidly across the 3,4-positions (and, hence, that the energy of activation must be less for this site), but the 7,8-water-adduct is thermodynamically the more stable. With time, the concentration of the species hydrated in the 3,4-position reaches a maximum (about 64% of the total concentration). Thereafter, it falls steadily and the concentration of the 7,8-adduct rises until, at equilibrium, the latter accounts for 92% of the total and the 3,4-adduct for only 7.6%. In 2,6-dihydroxy-4-methylpteridine, the methyl group drastically reduces the extent of water addition to the 3,4-position but does not significantly affect 7,8-addition, so that, spectroscopically, only a first-order conversion of anhydrous molecule into the 7,8-water-adduct is observed. ... [Pg.72]

Relaxation experiments. Use the relaxation times for the equilibrium shown to calculate the forward and reverse rate constants. The values are expressed in terms of the total concentration of chromium(VI), or [Cr(VI)]i = [HCrOj] + 2[Cr202 ] ... [Pg.270]

The complexation of Pu(IV) with carbonate ions is investigated by solubility measurements of 238Pu02 in neutral to alkaline solutions containing sodium carbonate and bicarbonate. The total concentration of carbonate ions and pH are varied at the constant ionic strength (I = 1.0), in which the initial pH values are adjusted by altering the ratio of carbonate to bicarbonate ions. The oxidation state of dissolved species in equilibrium solutions are determined by absorption spectrophotometry and differential pulse polarography. The most stable oxidation state of Pu in carbonate solutions is found to be Pu(IV), which is present as hydroxocarbonate or carbonate species. The formation constants of these complexes are calculated on the basis of solubility data which are determined to be a function of two variable parameters the carbonate concentration and pH. The hydrolysis reactions of Pu(IV) in the present experimental system assessed by using the literature data are taken into account for calculation of the carbonate complexation. [Pg.315]

We can calculate the mass that dissolves from the total concentration of Ag ions at equilibrium. We apply the seven-step method. [Pg.1330]

At equilibrium, the concentration of H+ will remain constant. When a strong acid (represented by H+ or HA) is introduced into solution, the concentration of H+ is increased. The buffer compensates by reacting with the excess H ions, moving the direction of the above reaction to the left. By combining with bicarbonate and carbonate ions to form the nonionic carbonic acid, equilibrium is reestablished at a pH nearly the same as that existing before. The buffer capacity in this case is determined by the total concentration of carbonate and bicarbonate ions. When no more carbonate or bicarbonate ions are available to combine with excess H+ ions, the buffer capacity has been exceeded and pH will change dramatically upon addition of further acid. [Pg.808]

The rate of change in total concentration of drug species in the donor is equal to the net rate of uptake by the cells leading to quasi-equilibrium and efflux from the BL membrane and across the filter support into the receiver (sink) (see Fig. 31) thus,... [Pg.323]

Table II shows the result of compaction experiments with Glen Rose Shale. Column 2 gives the equilibrium NaCl concentration of the solution before the compaction experiment. Column 3 gives the anion-free water calculated as shown in Appendix I. Column 4 gives the amount of the bulk solution which has the NaCl concentration given in Column 2. Column 5 gives the total amount of fluid flowing out of... Table II shows the result of compaction experiments with Glen Rose Shale. Column 2 gives the equilibrium NaCl concentration of the solution before the compaction experiment. Column 3 gives the anion-free water calculated as shown in Appendix I. Column 4 gives the amount of the bulk solution which has the NaCl concentration given in Column 2. Column 5 gives the total amount of fluid flowing out of...
Cote, G. Jakubiak, A. Bauer, D. Szymanowski, J. Mokili, B. Poitrenaud, C. Modeling of extraction equilibrium for copper(II) extraction bypyridinecarboxylic acid esters from concentrated chloride solutions at constant water activity and constant total concentration of ionic or molecular species dissolved in the aqueous solution. Solvent Extr. [Pg.801]

Here, L is a mobile ligand which can leave the metal site (M) open briefly for reaction with A in the initial step of the catalytic cycle. The transformation of the M A complex into products completes the cycle. The equilibrium in step (1) lies far to the left in most cases, because the ligands protect the metal centers from agglomeration. Thus, the concentration of M is very small, and the total concentration of catalyst is cMr = cm a + cm l- The rate law which arises from this mechanism is... [Pg.187]

Compounds 30-32 formed 2 1 complexes with CDs (Scheme 13). The formation of the 1 1 complex was fast and for this reason only one relaxation process was observed. In the cases where the 2 2 complex was present its formation was also fast and only one relaxation process for the 2 1 complex was observed in the temperature jump experiments. Since the equilibria are coupled the expression for the observed rate constant includes Kt, (and K22 when the 2 2 complex is present), k21, k2, and the concentrations of guest, 1 1 complex and CD.180 182 The values for the association and dissociation rate constants and equilibrium constants were obtained from the non-linear fit of the dependence of kobs on the total concentration of CD (Table 9). [Pg.209]

For example, the equilibrium measurements of linear thermal expansion and X-ray lattice expansion of Simmons and Baluffi80 yield directly the total concentration of vacancies, and this is written as... [Pg.37]

InES] = /( I S In from equilibrium Therefore, the total concentration of E may be given as... [Pg.170]

The algorithms developed in this chapter can model any situation, e.g. they can serve to demonstrate the effects of initial concentrations and rate constants in kinetics and of total concentration and equilibrium constants in equilibrium situations. Very importantly, these algorithms further form the core of non-linear least-squares fitting programs for the determination of rate or equilibrium constants, introduced and developed in Chapter 3, Model-Based Analyses. [Pg.32]

Whatever the aim of a particular titration, the computation of the position of a chemical equilibrium for a set of initial conditions (e.g. total concentrations) and equilibrium constants, is the crucial part. The complexity ranges from simple 1 1 interactions to the analysis of solution equilibria between several components (usually Lewis acids and bases) to form any number of species (complexes). A titration is nothing but a preparation of a series of solutions with different total concentrations. This chapter covers all the requirements for the modelling of titrations of any complexity. Model-based analysis of titration curves is discussed in the next chapter. The equilibrium computations introduced here are the innermost functions required by the fitting algorithms. [Pg.40]


See other pages where Equilibria total concentrations is mentioned: [Pg.386]    [Pg.434]    [Pg.450]    [Pg.771]    [Pg.307]    [Pg.35]    [Pg.421]    [Pg.253]    [Pg.253]    [Pg.127]    [Pg.130]    [Pg.228]    [Pg.143]    [Pg.26]    [Pg.29]    [Pg.325]    [Pg.12]    [Pg.31]    [Pg.155]    [Pg.99]    [Pg.121]    [Pg.122]    [Pg.30]    [Pg.677]    [Pg.405]    [Pg.304]    [Pg.426]    [Pg.468]    [Pg.652]    [Pg.166]    [Pg.458]    [Pg.417]    [Pg.435]    [Pg.26]   
See also in sourсe #XX -- [ Pg.41 , Pg.43 , Pg.47 ]




SEARCH



Equilibria equilibrium concentrations

Equilibrium concentration

Total concentration of aluminium in equilibrium with gibbsite

Total equilibrium

© 2024 chempedia.info