Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Equatorial cyclohexanone

The stereoselective reactions in Scheme 2.10 include one example that is completely stereoselective (entry 3), one that is highly stereoselective (entry 6), and others in which the stereoselectivity is modest to low (entries 1,2,4, 5, and 7). The addition of formic acid to norbomene (entry 3) produces only the exo ester. Reduction of 4-r-butylcyclohexanone (entry 6) is typical of the reduction of unhindered cyclohexanones in that the major diastereomer produced has an equatorial hydroxyl group. Certain other reducing agents, particularly sterically bulky ones, exhibit the opposite stereoselectivity and favor the formation of the diastereomer having an axial hydroxyl groi. The alkylation of 4-t-butylpiperidine with benzyl chloride (entry 7) provides only a slight excess of one diastereomer over the other. [Pg.100]

There is another aspect to the question of the reactivity of the carbonyl group in r ck)hexanone. This has to do with the preference for approach of reactants from the axial ir equatorial direction. The chair conformation of cyclohexanone places the carbonyl coup in an unsynunetrical environment. It is observed that small nucleophiles prefer to roach the carbonyl group of cyclohexanone from the axial direction even though this is 1 more sterically restricted approach than from the equatorial side." How do the ctfcnaices in the C—C bonds (on the axial side) as opposed to the C—H bonds (on the equatorial side) influence the reactivity of cyclohexanone ... [Pg.173]

More bulky nucleophiles usually approach the cyclohexanone carbonyl from the equatorial direction. This is called steric approach control and is the result of van der Waals type repulsions. Larger nucleophiles encounter the 3,5-axial hydrogens on the axial approach trajectory. [Pg.174]

The reduction of an asymmetric cyclohexanone (e.g. a steroidal ketone) can lead to two epimeric alcohols. Usually one of these products predominates. The experimental results for the reduction of steroidal ketones with metal hydrides have been well summarized by Barton and are discussed in some detail in a later section (page 76) unhindered ketones are reduced by hydrides to give mainly equatorial alcohols hindered ketones (more accurately ketones for which axial approach of the reagent is hindered " ) are reduced to give mainly axial alcohols. [Pg.67]

These mechanistic interpretations can also be applied to the hydrogenation of cyclohexanones. In acid, the carbonium ion (19) is formed and adsorbed on the catalyst from the least hindered side. Hydride ion transfer from the catalyst gives the axial alcohol (20). " In base, the enolate anion (21) is also adsorbed from the least hindered side. Hydride ion transfer from the catalyst followed by protonation from the solution gives the equatorial alcohol (22). [Pg.116]

The tetrasubstituted isomer of the morpholine enamine of 2-methyl-cyclohexanone (20) because cf the diminished electronic overlap should be expected to exhibit lower degree of enamine-type reactivity toward electrophilic agents than the trisubstituted isomer. This was demonstrated to be the case when the treatment of the enamine with dilute acetic acid at room temperature resulted in the completely selective hydrolysis of the trisubstituted isomer within 5 min. The tetrasubstituted isomer was rather slow to react and was 96% hydrolyzed after 22 hr (77). The slowness might also be due to the intermediacy of quaternary iminium ion 23, which suffers from a severe. 4< strain 7,7a) between the equatorial C-2 methyl group and the methylene group adjacent to the nitrogen atom, 23 being formed by the stereoelectronically controlled axial protonation of 20. [Pg.9]

It would be pertinent to point out (25,27) that the trisubstituted isomer of the enamine of 2-aIkylcyclohexanone reacts in a quantitative manner with ethyl azodicarboxylate to give the addition product (35). This reaction in Conjunction with NMR spectroscopy can thus be employed for the determination of the amount of the trisubstituted isomer. According to the authors, hydrolysis of 35 furnishes the corresponding cw-2,6-disubstituted cyclohexanone (36) this seems unlikely since it would involve the stereo-electronically unfavored equatorial protonation of the enamine. [Pg.13]

Malhotra et al. (5pyrrolidine enamine of 3-methyl-cyclohexanone, prepared under equilibrating conditions, is a 3 7 mixture of A and A isomers (67 and 68) on the basis of NMR spectral data. The preponderance of the A isomer in the mixture was attributed to strain between the equatorial methyl group and the vinylic hydrogen atom... [Pg.23]

LUMO map for cyclohexanone axial face (left) and equatorial face (right)... [Pg.31]

Recendy, Darzens reaction was investigated for its synthetic applicability to the condensation of substituted cyclohexanes and optically active a-chloroesters (derived from (-)-phenylmenthol). In this report, it was found that reaction between chloroester 44 and cyclohexanone 43 provided an 84% yield with 78 22 selectivity for the axial glycidic ester 45 over equatorial glycidic ester 46 both having the R configuration at the epoxide stereocenter. [Pg.19]

In the case of substituted cyclic ketones, particularly cyclohexanones, the stereochemical outcome of an addition reaction is determined by the predominance of either equatorial or axial attack of the nucleophile, leading to axial or equatorial alcohols, respectively 25 -27 (Figure 8). [Pg.4]

Figure9. Equatorial (A ) and axial (FA) attack on 3-substituted cyclohexanones. Figure9. Equatorial (A ) and axial (FA) attack on 3-substituted cyclohexanones.
The stereochemical outcome of nucleophilic addition reactions to cyclic ketones is the subject of numerous experimental and theoretical studies, with substituted cyclohexanones and cy-clopcntanones having been intensively studied. In addition reactions to substituted cyclohexanones 1 the problem of simple diastereoselectivity is manifested in the predominance of cither axial attack of a nucleophile, leading to the equatorial alcohol 2 A. or equatorial attack of the nucleophile which leads to the axial alcohol 2B. [Pg.7]

The high importance of the steric interaction of the incoming nucleophile with the axial groups at C-3 and C-5 of the cyclohexanone is impressively demonstrated by addition reactions to 3,3,5-trimethylcyclohexanone (14). The presence of an axial methyl substituent intensifies the steric interaction in such a way that the nucleophile is forced to enter the carbonyl group exclusively from the less hindered equatorial side6,7,21. Exclusive formation of the axial... [Pg.12]

Similar to cyclohexanones, substituted cyclopentanones also adopt a conformation with the substituents in a sterically favorable position. In the case of 2-substituted cyclopentanones 1 the substituent occupies a pseudoequatorial position and the diastereoselectivity of nucleophilic addition reactions to 1 is determined by the relative importance of the interactions leading to predominant fra s(equatorial) or cw(axial) attack of the nucleophile. When the nucleophile approaches from the cis side, steric interaction with the substituent at C-2 is encountered. On the other hand, according to Felkin, significant torsional strain between the pseudoaxial C-2—H bond and the incipient bond occurs if the nucleophile approaches the carbonyl group from the trans side. [Pg.14]

As observed with cyclohexanones, the diastereoselectivity of the addition reaction of trimeth-ylaluminum to 2-methylcyclopentanone depends on the stoichiometry of the reactants. Thus, addition of one equivalent of trimcthylaluminum proceeds via preferential tram attack whereas, due to the "compression effect , addition of an excess of the reagent leads to the formation of the equatorial alcohol via predominant attack from the cis side (Table 3)6. In contrast to the addition reactions with trimethylaluniinum, no reversal of the diastereoselectivity upon change of reagent stoichiometry was observed in the addition of triphenylaluminum to 2-methylcyclopentanone6. Even with an excess of the aluminum reagent trans attack predominates. However, the diastereoselectivity is lower than with the use of an equimolar amount of the reactants. [Pg.15]

Exclusive exo (equatorial) attack is also observed with bicyclo[3.2.1]octan-3-one (5), whereas addition of methylmagnesium iodide to bicyclo[3.2.1]octan-2-one (7) affords the diastereomeric products in almost equal amounts5i. The cyclohexanone moiety of both bicyclic ketones 5 and 7 adopts a chair conformation and therefore the 3,5-diaxialethano bridge in... [Pg.17]

The principles involved in the conformational analysis of six-membered rings containing one or two trigonal atoms, for example, cyclohexanone and cyclohexene are similar. The barrier to interconversion in cyclohexane has been calculated to be 8.4-12.1 kcal mol . Cyclohexanone derivatives also assume a chair conformation. Substituents at C2 can assume an axial or equatorial position depending on steric and electronic influences. The proportion of the conformation with an axial X group is shown in Table 4.4 for a variety of substituents (X) in 2-substituted cyclohexanones. [Pg.175]

Another difference between dimethylsulfonium methylide and dimethylsulfoxonium methylide concerns the stereoselectivity in formation of epoxides from cyclohexanones. Dimethylsulfonium methylide usually adds from the axial direction whereas dimethylsulfoxonium methylide favors the equatorial direction. This result may also be due to reversibility of addition in the case of the sulfoxonium methylide.92 The product from the sulfonium ylide is the result the kinetic preference for axial addition by small nucleophiles (see Part A, Section 2.4.1.2). In the case of reversible addition of the sulfoxonium ylide, product structure is determined by the rate of displacement and this may be faster for the more stable epoxide. [Pg.178]

For reduction of monofunctional ketones, the most effective catalysts include diamine ligands. The diamine catalysts exhibit strong selectivity for carbonyl groups over carbon-carbon double and triple bonds. These catalysts have a preference for equatorial approach in the reduction of cyclohexanones and for steric approach control in the reduction of acyclic ketones.51... [Pg.392]

With less hindered hydride donors, particularly NaBH4 and LiAlH4, confor-mationally biased cyclohexanones give predominantly the equatorial alcohol, which is normally the more stable of the two isomers. However, hydride reductions are exothermic reactions with low activation energies. The TS should resemble starting ketone, so product stability should not control the stereoselectivity. A major factor in the preference for the equatorial isomer is the torsional strain that develops in the formation of the axial alcohol.117... [Pg.408]

As observed in runs 3-5 (Table 6) the reaction shows poor diastereofa-cial selectivity. For example, the reaction with 4-substituted cyclohexanone provides a mixture of an equatorial approach product 52eq and an axial approach product 52ax in a ration of ca. 6 1, irrespective of the steric size of the substituents... [Pg.202]

Axial addition to cyclohexanones.1 Addition of carbanions to cyclic ketones generally favors equatorial products. This preference may result from nonbonded interactions, since Trost et al. now find that the addition of LiCH2CN to cyclohexanones is axial selective (equation I). The preference for axial addition is even higher in the case of cyclohexenones ( 20 1). The axial selectivity of LiCH2CN is... [Pg.189]


See other pages where Equatorial cyclohexanone is mentioned: [Pg.177]    [Pg.177]    [Pg.25]    [Pg.145]    [Pg.173]    [Pg.471]    [Pg.70]    [Pg.71]    [Pg.72]    [Pg.114]    [Pg.397]    [Pg.111]    [Pg.5]    [Pg.7]    [Pg.8]    [Pg.8]    [Pg.10]    [Pg.12]    [Pg.18]    [Pg.249]    [Pg.80]    [Pg.112]    [Pg.282]    [Pg.407]    [Pg.648]    [Pg.1136]    [Pg.68]    [Pg.131]    [Pg.104]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



Equatorial

© 2024 chempedia.info