Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Axial cyclohexanone

The internal C -Cc=o-C -C// dihedral is also affected by the flattening and is 50° in the axial ring compared to 42° in the axial cyclohexanone transition struc-... [Pg.176]

MCPBA, DMF, —63°, 100% yield.An axial a-methyl group on a cyclohexanone does not epimerize under these conditions. [Pg.212]

The stereoselective reactions in Scheme 2.10 include one example that is completely stereoselective (entry 3), one that is highly stereoselective (entry 6), and others in which the stereoselectivity is modest to low (entries 1,2,4, 5, and 7). The addition of formic acid to norbomene (entry 3) produces only the exo ester. Reduction of 4-r-butylcyclohexanone (entry 6) is typical of the reduction of unhindered cyclohexanones in that the major diastereomer produced has an equatorial hydroxyl group. Certain other reducing agents, particularly sterically bulky ones, exhibit the opposite stereoselectivity and favor the formation of the diastereomer having an axial hydroxyl groi. The alkylation of 4-t-butylpiperidine with benzyl chloride (entry 7) provides only a slight excess of one diastereomer over the other. [Pg.100]

There is another aspect to the question of the reactivity of the carbonyl group in r ck)hexanone. This has to do with the preference for approach of reactants from the axial ir equatorial direction. The chair conformation of cyclohexanone places the carbonyl coup in an unsynunetrical environment. It is observed that small nucleophiles prefer to roach the carbonyl group of cyclohexanone from the axial direction even though this is 1 more sterically restricted approach than from the equatorial side." How do the ctfcnaices in the C—C bonds (on the axial side) as opposed to the C—H bonds (on the equatorial side) influence the reactivity of cyclohexanone ... [Pg.173]

More bulky nucleophiles usually approach the cyclohexanone carbonyl from the equatorial direction. This is called steric approach control and is the result of van der Waals type repulsions. Larger nucleophiles encounter the 3,5-axial hydrogens on the axial approach trajectory. [Pg.174]

The reduction of an asymmetric cyclohexanone (e.g. a steroidal ketone) can lead to two epimeric alcohols. Usually one of these products predominates. The experimental results for the reduction of steroidal ketones with metal hydrides have been well summarized by Barton and are discussed in some detail in a later section (page 76) unhindered ketones are reduced by hydrides to give mainly equatorial alcohols hindered ketones (more accurately ketones for which axial approach of the reagent is hindered " ) are reduced to give mainly axial alcohols. [Pg.67]

These mechanistic interpretations can also be applied to the hydrogenation of cyclohexanones. In acid, the carbonium ion (19) is formed and adsorbed on the catalyst from the least hindered side. Hydride ion transfer from the catalyst gives the axial alcohol (20). " In base, the enolate anion (21) is also adsorbed from the least hindered side. Hydride ion transfer from the catalyst followed by protonation from the solution gives the equatorial alcohol (22). [Pg.116]

The tetrasubstituted isomer of the morpholine enamine of 2-methyl-cyclohexanone (20) because cf the diminished electronic overlap should be expected to exhibit lower degree of enamine-type reactivity toward electrophilic agents than the trisubstituted isomer. This was demonstrated to be the case when the treatment of the enamine with dilute acetic acid at room temperature resulted in the completely selective hydrolysis of the trisubstituted isomer within 5 min. The tetrasubstituted isomer was rather slow to react and was 96% hydrolyzed after 22 hr (77). The slowness might also be due to the intermediacy of quaternary iminium ion 23, which suffers from a severe. 4< strain 7,7a) between the equatorial C-2 methyl group and the methylene group adjacent to the nitrogen atom, 23 being formed by the stereoelectronically controlled axial protonation of 20. [Pg.9]

The presence of 1,3-diaxial interaction between the C-2 alkyl group and the C-4 axial hydrogen atom is reflected in the rate of enamine formation of 2-substituted cyclohexanone. It has been shown by Hunig and Salzwedel (20) that even under forcing conditions, the yield of pyrrolidine and morpholine enamines of 2-methylcyclohexanone does not exceed 58%, whereas the C-2 unsubstituted ketones underwent enamine formation under rather milder conditions in better than 80 % yield. [Pg.11]

Risaliti et al. (22), have shown that in the addition of the electrophilic olefins to the enamines of cyclohexanone, the formation of the less substituted enamine is favored when a bulky group is present at the electrophilic carbon atom. For instance, the reaction of (8-nitrostyrene with the morpholine enamine of cyclohexanone gave only the trisubstituted isomer (30) with the substituent in the axial orientation (23). The product on hydrolysis led to the ketone (31) to which erythro configuration was assigned on the grounds illustrated in Scheme 3 (24). [Pg.11]

In a similar manner the addition of ethyl azodicarboxylate to the morpholine enamine of cyclohexanone furnished the less substituted isomer (34) with the substituent in the axial orientation (2, 26). [Pg.13]

The reactions of pyrrolidinocyelohexenes with acid have also been Considered from a stereochemical point of view. Deuteration of the 2-methylcyclohexanone enamine gave di-2-deuterio-6-methylcyclohexanone under conditions where ds-4-/-butyI-6-methyIpyrrolidinocycIohexene was not deuterated (2J4). This experiment supported the postulate of Williamson (2JS), which called for the axial attack of an electrophile and axial orientation of the 6 substituent on an aminocyclohexene in the transition state of such enamine reactions. These geometric requirements explain the more difficult alkylation of a cyclohexanone enamine on carbon 2, when it is substituted at the 6 position, as compared with the unsubstituted case. [Pg.345]

LUMO map for cyclohexanone axial face (left) and equatorial face (right)... [Pg.31]

Recendy, Darzens reaction was investigated for its synthetic applicability to the condensation of substituted cyclohexanes and optically active a-chloroesters (derived from (-)-phenylmenthol). In this report, it was found that reaction between chloroester 44 and cyclohexanone 43 provided an 84% yield with 78 22 selectivity for the axial glycidic ester 45 over equatorial glycidic ester 46 both having the R configuration at the epoxide stereocenter. [Pg.19]

A useful method for the synthesis of axial alcohols from unhindered cyclohexanones is by hydrogenation over rhodium in THF-HCl, Reduction... [Pg.73]

In the case of substituted cyclic ketones, particularly cyclohexanones, the stereochemical outcome of an addition reaction is determined by the predominance of either equatorial or axial attack of the nucleophile, leading to axial or equatorial alcohols, respectively 25 -27 (Figure 8). [Pg.4]

Figure9. Equatorial (A ) and axial (FA) attack on 3-substituted cyclohexanones. Figure9. Equatorial (A ) and axial (FA) attack on 3-substituted cyclohexanones.
The stereochemical outcome of nucleophilic addition reactions to cyclic ketones is the subject of numerous experimental and theoretical studies, with substituted cyclohexanones and cy-clopcntanones having been intensively studied. In addition reactions to substituted cyclohexanones 1 the problem of simple diastereoselectivity is manifested in the predominance of cither axial attack of a nucleophile, leading to the equatorial alcohol 2 A. or equatorial attack of the nucleophile which leads to the axial alcohol 2B. [Pg.7]

Although it might be expected that a larger substituent at the 2-position of cyclohexanone would hinder axial attack to a greater extent, addition reactions to 2-methyl-, 2-ethyl- and... [Pg.10]

The high importance of the steric interaction of the incoming nucleophile with the axial groups at C-3 and C-5 of the cyclohexanone is impressively demonstrated by addition reactions to 3,3,5-trimethylcyclohexanone (14). The presence of an axial methyl substituent intensifies the steric interaction in such a way that the nucleophile is forced to enter the carbonyl group exclusively from the less hindered equatorial side6,7,21. Exclusive formation of the axial... [Pg.12]

Similar to cyclohexanones, substituted cyclopentanones also adopt a conformation with the substituents in a sterically favorable position. In the case of 2-substituted cyclopentanones 1 the substituent occupies a pseudoequatorial position and the diastereoselectivity of nucleophilic addition reactions to 1 is determined by the relative importance of the interactions leading to predominant fra s(equatorial) or cw(axial) attack of the nucleophile. When the nucleophile approaches from the cis side, steric interaction with the substituent at C-2 is encountered. On the other hand, according to Felkin, significant torsional strain between the pseudoaxial C-2—H bond and the incipient bond occurs if the nucleophile approaches the carbonyl group from the trans side. [Pg.14]

Bei der elektrochemischen Reduktion von Cycloalkanonen steht i. a. der stereochemi-sche Aspekt (cis/trans axial/aquatorial) im Vordergrund, so z. B. bei der Reduktion der Methyl- und anderer Alkyl-cyclohexanone, substituierter 2-Oxo-bicyclo[2.2.1]heptane und bei Oxo-dekalinen. Mit zumeist Alkoholen als Solvens fallen die entsprechenden cy-clischen sekundaren Alkohole zu 47-60% d.Th. an7-11. [Pg.605]

Reaction (31) shows an example of hydrosilylation of ketones, i.e., reduction of 4-ferf-butyl-cyclohexanone affordir mainly the tmns isomer, indicating that the axial H-abstraction is favored7... [Pg.132]

The principles involved in the conformational analysis of six-membered rings containing one or two trigonal atoms, for example, cyclohexanone and cyclohexene are similar. The barrier to interconversion in cyclohexane has been calculated to be 8.4-12.1 kcal mol . Cyclohexanone derivatives also assume a chair conformation. Substituents at C2 can assume an axial or equatorial position depending on steric and electronic influences. The proportion of the conformation with an axial X group is shown in Table 4.4 for a variety of substituents (X) in 2-substituted cyclohexanones. [Pg.175]

TABLE 4.4 Proportion of Axial Conformation in 2-Substituted Cyclohexanones, in CDCI3... [Pg.176]

The LUMO of cyclohexanone 3 is an out-of-phase combination of the carbonyl It orbital with the orbital (5 in Fig. 4). The out-of-phase enviromnent disfavors attack from the face of the bonds (motif ii in Fig. 1). This leads to the axial attack of nucleophiles. The observed selectivities are in agreement with the orbital... [Pg.132]


See other pages where Axial cyclohexanone is mentioned: [Pg.169]    [Pg.169]    [Pg.25]    [Pg.145]    [Pg.173]    [Pg.70]    [Pg.71]    [Pg.72]    [Pg.114]    [Pg.5]    [Pg.7]    [Pg.8]    [Pg.8]    [Pg.10]    [Pg.12]    [Pg.18]    [Pg.249]    [Pg.988]    [Pg.1198]    [Pg.80]    [Pg.133]    [Pg.146]    [Pg.112]   
See also in sourсe #XX -- [ Pg.159 ]




SEARCH



© 2024 chempedia.info