Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxides Sharpless epoxidation

The most important catalytic asymmetric syntheses include addition reactions to C=C double bonds. One of the best known is the Sharpless epoxidations. Sharpless epoxidations cannot be carried out on all alkenes but only on primary or secondary allylic alcohols. Even with this limitation, the process has seen a great deal of application. [Pg.136]

Key Words Ethylene oxide, Propylene oxide. Epoxybutene, Market, Isoamylene oxide. Cyclohexene oxide. Styrene oxide, Norbornene oxide. Epichlorohydrin, Epoxy resins, Carbamazepine, Terpenes, Limonene, a-Pinene, Fatty acid epoxides, Allyl epoxides, Sharpless epoxidation. Turnover frequency, Space time yield. Hydrogen peroxide, Polyoxometallates, Phase-transfer reagents, Methyltrioxorhenium (MTO), Fluorinated acetone, Alkylmetaborate esters. Alumina, Iminium salts, Porphyrins, Jacobsen-Katsuki oxidation, Salen, Peroxoacetic acid, P450 BM-3, Escherichia coli, lodosylbenzene, Oxometallacycle, DFT, Lewis acid mechanism, Metalladioxolane, Mimoun complex, Sheldon complex, Michaelis-Menten, Schiff bases. Redox mechanism. Oxygen-rebound mechanism, Spiro structure. 2008 Elsevier B.V. [Pg.4]

The first practical method for asymmetric epoxidation of primary and secondary allylic alcohols was developed by K.B. Sharpless in 1980 (T. Katsuki, 1980 K.B. Sharpless, 1983 A, B, 1986 see also D. Hoppe, 1982). Tartaric esters, e.g., DET and DIPT" ( = diethyl and diisopropyl ( + )- or (— )-tartrates), are applied as chiral auxiliaries, titanium tetrakis(2-pro-panolate) as a catalyst and tert-butyl hydroperoxide (= TBHP, Bu OOH) as the oxidant. If the reaction mixture is kept absolutely dry, catalytic amounts of the dialkyl tartrate-titanium(IV) complex are suflicient, which largely facilitates work-up procedures (Y. Gao, 1987). Depending on the tartrate enantiomer used, either one of the 2,3-epoxy alcohols may be obtained with high enantioselectivity. The titanium probably binds to the diol grouping of one tartrate molecule and to the hydroxy groups of the bulky hydroperoxide and of the allylic alcohol... [Pg.124]

Sharpless epoxidations can also be used to separate enantiomers of chiral allylic alcohols by kinetic resolution (V.S. Martin, 1981 K.B. Sharpless, 1983 B). In this procedure the epoxidation of the allylic alcohol is stopped at 50% conversion, and the desired alcohol is either enriched in the epoxide fraction or in the non-reacted allylic alcohol fraction. Examples are given in section 4.8.3. [Pg.126]

In the Sharpless epoxidation of divinylmethanols only one of four possible stereoisomers is selectively formed. In this special case the diastereotopic face selectivity of the Shaipless reagent may result in diastereomeric by-products rather than the enantiomeric one, e.g., for the L -(-(-)-DIPT-catalyzed epoxidation of (E)-a-(l-propenyl)cyclohexaneraethanol to [S(S)-, [R(S)-, [S(R)- and [R(R)-trans]-arate constants is 971 19 6 4 (see above S.L. Schreiber, 1987). This effect may strongly enhance the e.e. in addition to the kinetic resolution effect mentioned above, which finally reduces further the amount of the enantiomer formed. [Pg.126]

A catalytic enantio- and diastereoselective dihydroxylation procedure without the assistance of a directing functional group (like the allylic alcohol group in the Sharpless epox-idation) has also been developed by K.B. Sharpless (E.N. Jacobsen, 1988 H.-L. Kwong, 1990 B.M. Kim, 1990 H. Waldmann, 1992). It uses osmium tetroxide as a catalytic oxidant (as little as 20 ppm to date) and two readily available cinchona alkaloid diastereomeis, namely the 4-chlorobenzoate esters or bulky aryl ethers of dihydroquinine and dihydroquinidine (cf. p. 290% as stereosteering reagents (structures of the Os complexes see R.M. Pearlstein, 1990). The transformation lacks the high asymmetric inductions of the Sharpless epoxidation, but it is broadly applicable and insensitive to air and water. Further improvements are to be expected. [Pg.129]

In the last fifteen years macrolides have been the major target molecules for complex stereoselective total syntheses. This choice has been made independently by R.B. Woodward and E.J. Corey in Harvard, and has been followed by many famous fellow Americans, e.g., G. Stork, K.C. Nicolaou, S. Masamune, C.H. Heathcock, and S.L. Schreiber, to name only a few. There is also no other class of compounds which is so suitable for retrosynthetic analysis and for the application of modem synthetic reactions, such as Sharpless epoxidation, Noyori hydrogenation, and stereoselective alkylation and aldol reactions. We have chosen a classical synthesis by E.J. Corey and two recent syntheses by A.R. Chamberlin and S.L. Schreiber as examples. [Pg.319]

The 9 — 15 fragment was prepared by a similar route. Once again Sharpless kinetic resolution method was applied, but in the opposite sense, i.e., at 29% conversion a mixture of the racemic olefin educt with the virtually pure epoxide stereoisomer was obtained. On acid-catalysed epoxide opening and lactonization the stereocentre C-12 was inverted, and the pure dihydroxy lactone was isolated. This was methylated, protected as the acetonide, reduced to the lactol, protected by Wittig olefination and silylation, and finally ozonolysed to give the desired aldehyde. [Pg.322]

Fig. 8. Use of Sharpless asymmetric epoxidation for the preparation of an intermediate in the synthesis of FK-506 (105), where represents the chiral... Fig. 8. Use of Sharpless asymmetric epoxidation for the preparation of an intermediate in the synthesis of FK-506 (105), where represents the chiral...
By employing Sharpless epoxidation as a key step, a multistep chemical synthesis of (E)-pantolactone has also been reported (55). [Pg.60]

Both saturated (50) and unsaturated derivatives (51) are easily accepted by lipases and esterases. Lipase P from Amano resolves azide (52) or naphthyl (53) derivatives with good yields and excellent selectivity. PPL-catalyzed resolution of glycidyl esters (54) is of great synthetic utiUty because it provides an alternative to the Sharpless epoxidation route for the synthesis of P-blockers. The optical purity of glycidyl esters strongly depends on the stmcture of the acyl moiety the hydrolysis of propyl and butyl derivatives of epoxy alcohols results ia esters with ee > 95% (30). [Pg.339]

Recently (79MI50500) Sharpless and coworkers have shown that r-butyl hydroperoxide (TBHP) epoxidations, catalyzed by molybdenum or vanadium compounds, offer advantages over peroxy acids with regard to safety, cost and, sometimes, selectivity, e.g. Scheme 73, although this is not always the case (Scheme 74). The oxidation of propene by 1-phenylethyl hydroperoxide is an important industrial route to methyloxirane (propylene oxide) (79MI5501). [Pg.116]

The remarkable stereospecificity of TBHP-transition metal epoxidations of allylic alcohols has been exploited by Sharpless group for the synthesis of chiral oxiranes from prochiral allylic alcohols (Scheme 76) (81JA464) and for diastereoselective oxirane synthesis from chiral allylic alcohols (Scheme 77) (81JA6237). It has been suggested that this latter reaction may enable the preparation of chiral compounds of complete enantiomeric purity cf. Scheme 78) ... [Pg.116]

SHARPLESS Asymmetne Epoxidation EnanlioselectK/e epoxidation of altyl alcohois by means of Irtanlum a5(oxide, (+) or () diethyl tartarate (OET) and t butyl hydroperoxide (TBHP)... [Pg.343]

Asymmetric epoxidation of racemic unsaturated fluoro alcohols by the chiral Sharpless reagent can be exploited for kmetic resolution of enantiomers The recovered stereoisomer has 14-98% enantiomeric excess [55] (equation 50)... [Pg.337]

The Sharpless-Katsuki asymmetric epoxidation reaction (most commonly referred by the discovering scientists as the AE reaction) is an efficient and highly selective method for the preparation of a wide variety of chiral epoxy alcohols. The AE reaction is comprised of four key components the substrate allylic alcohol, the titanium isopropoxide precatalyst, the chiral ligand diethyl tartrate, and the terminal oxidant tert-butyl hydroperoxide. The reaction protocol is straightforward and does not require any special handling techniques. The only requirement is that the reacting olefin contains an allylic alcohol. [Pg.50]

In 1980, Katsuki and Sharpless communicated that the epoxidation of a variety of allylic alcohols was achieved in exceptionally high enantioselectivity with a catalyst derived from titanium(IV) isopropoxide and chiral diethyl tartrate. This seminal contribution described an asymmetric catalytic system that not only provided the product epoxide in remarkable enantioselectivity, but showed the immediate generality of the reaction by examining 5 of the 8 possible substitution patterns of allylic alcohols all of which were epoxidized in >90% ee. Shortly thereafter. Sharpless and others began to illustrate the... [Pg.50]

The AE reaction has been applied to a large number of diverse allylic alcohols. Illustration of the synthetic utility of substrates with a primary alcohol is presented by substitution pattern on the olefin and will follow the format used in previous reviews by Sharpless but with more current examples. Epoxidation of substrates bearing a chiral secondary alcohol is presented in the context of a kinetic resolution or a match versus mismatch with the chiral ligand. Epoxidation of substrates bearing a tertiary alcohol is not presented, as this class of substrate reacts extremely slowly. [Pg.54]

The Prilezhaev reaction is a rarely used name for the epoxidation of an alkene 1 by reaction with a peracid 2 to yield an oxirane 3. The epoxidation of alkenes has been further developed into an enantioselective method, that is named after Sharpless. [Pg.231]

The asymmetric epoxidation of an allylic alcohol 1 to yield a 2,3-epoxy alcohol 2 with high enantiomeric excess, has been developed by Sharpless and Katsuki. This enantioselective reaction is carried out in the presence of tetraisopropoxyti-tanium and an enantiomerically pure dialkyl tartrate—e.g. (-1-)- or (-)-diethyl tartrate (DET)—using tcrt-butyl hydroperoxide as the oxidizing agent. [Pg.254]

A model for the catalytically active species in the Sharpless epoxidation reaction is formulated as a dimer 3, where two titanium centers are linked by two chiral tartrate bridges. At each titanium center two isopropoxide groups of the original tetraisopropoxytitanium-(IV) have been replaced by the chiral tartrate ligand ... [Pg.254]


See other pages where Epoxides Sharpless epoxidation is mentioned: [Pg.105]    [Pg.23]    [Pg.125]    [Pg.126]    [Pg.320]    [Pg.321]    [Pg.323]    [Pg.324]    [Pg.248]    [Pg.524]    [Pg.525]    [Pg.12]    [Pg.26]    [Pg.27]    [Pg.1]    [Pg.50]    [Pg.51]    [Pg.254]    [Pg.254]    [Pg.255]    [Pg.256]   
See also in sourсe #XX -- [ Pg.539 ]




SEARCH



Epoxide Sharpless

Epoxides, Sharpless

Sharpless

Sharpless epoxidation

Sharpless epoxidations

© 2024 chempedia.info