Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxides catalysts, rhodium complexes

Butyne-l,4-diol has been hydrogenated to the 2-butene-diol (97), mesityl oxide to methylisobutylketone (98), and epoxides to alcohols (98a). The rhodium complex and a related solvated complex, RhCl(solvent)(dppb), where dppb = l,4-bis(diphenylphosphino)butane, have been used to hydrogenate the ketone group in pyruvates to give lactates (99) [Eq. (15)], and in situ catalysts formed from rhodium(I) precursors with phosphines can also catalyze the hydrogenation of the imine bond in Schiff bases (100) (see also Section III,A,3). [Pg.325]

Numerous studies have been directed toward expanding the chemistry of the donor/ac-ceptor-substituted carbenoids to reactions that form new carbon-heteroatom bonds. It is well established that traditional carbenoids will react with heteroatoms to form ylide intermediates [5]. Similar reactions are possible in the rhodium-catalyzed reactions of methyl phenyldiazoacetate (Scheme 14.20). Several examples of O-H insertions to form ethers 158 [109, 110] and S-H insertions to form thioethers 159 [111] have been reported, while reactions with aldehydes and imines lead to the stereoselective formation of epoxides 160 [112, 113] and aziridines 161 [113]. The use of chiral catalysts and pantolactone as a chiral auxiliary has been explored in many of these reactions but overall the results have been rather moderate. Presumably after ylide formation, the rhodium complex disengages before product formation, causing degradation of any initial asymmetric induction. [Pg.326]

Neutral catalysts or catalyst precursors based on fluorinated ligand systems have been applied in compressed CO2 to a broad range of transformations such as Zn- and Cr-catalyzed copolymerization of epoxides and CO2 [53, 54], Mo-catalyzed olefin metathesis [9], Pd-catalyzed coupling reactions [43, 55, 56] and Pd-catalyzed hydrogen peroxide synthesis [57]. Rhodium complexes with perfluoroalkyl-substituted P ligands proved successful in hydroformylation of terminal alkenes [28, 42, 44, 58], enantioselective hydroformylation [18, 59, 60], hydrogenation [61], hydroboration [62], and polymerization of phenylacetylene... [Pg.859]

The present interest in asymmetric catalysis was demonstrated by awarding Nobel prizes to three winners W. S. Knowles (USA) for elaboration of rhodium complex catalysts effective in asymmetric synthesis of anti-Parkinson medicine, R. Noyori (Japan) for elaboration of a new catalytic system based on chiral ruthenium-phosphine complex catalysts that are very effective in hydrogenation reactions, and B. Sharpless (USA) for elaboration of epoxidation and other reactions under the action of chiral titanium complexes. [Pg.312]

A major advantage that nonenzymic chiral catalysts might have over enzymes, then, is their potential ability to accept substrates of different structures by contrast, an enzyme will select only its substrate from a mixture. Striking examples are the chiral phosphine-rhodium catalysts, which catalyze die hydrogenation of double bonds to produce chiral amino acids (10-12), and the titanium isopropoxide-tartrate complex of Sharpless (11,13,14), which catalyzes the epoxidation of numerous allylic alcohols. Since the enantiomeric purities of the products from these reactions are exceedingly high (>90%), we might conclude... [Pg.89]

There are also several situations where the metal can act as both a homolytic and heterolytic catalyst. For example, vanadium complexes catalyze the epoxidation of allylic alcohols by alkyl hydroperoxides stereoselectively,57 and they involve vanadium(V) alkyl peroxides as reactive intermediates. However, vanadium(V)-alkyl peroxide complexes such as (dipic)VO(OOR)L, having no available coordination site for the complexation of alkenes to occur, react homolyti-cally.46 On the other hand, Group VIII dioxygen complexes generally oxidize alkenes homolytically under forced conditions, while some rhodium-dioxygen complexes oxidize terminal alkenes to methyl ketones at room temperature. [Pg.325]

Epoxidation of oleic and linoleic acid was readily achieved by treatment with the acetonitrile complex of hypofluorous acid (55). Phase-transfer-catalyzed biphasic epoxidation of unsaturated triglycerides was accomplished with ethylmethyldioxirane in 2-butanone (56). The enantioselective formation of an a,P-epoxy alcohol by reaction of methyl 13()S)-hydroperoxy-18 2(9Z,llfi) with titanium isopropoxide has been reported (57). An immobilized form of Candida antartica on acrylic resin (Novozyme 435) was used to catalyze the perhydrolysis and the interesterification of esters. Unsaturated alcohols were converted with an ester in the presence of hydrogen peroxide to esters of epoxidized alcohols (e.g., epoxystearylbutyrate) directly (58). Homoallyl ethers were obtained from olefinic fatty esters by the ethylaluminium-in-duced reactions with dimethyl acetals of formaldehyde, acetaldehyde, isobutyralde-hyde, and pivaldehyde (59). Reaction of 18 2(9Z, 12Z) with 50% BF3-methanol gave monomethoxy and dimethoxy derivatives (60). A bulky phosphite-modified rhodium catalyst was developed for the hydroformylation of methyl 18 1 (9Z)and 18 1(9 ), which furnished mixtures of formylstearate and diformylstearate (61). [Pg.26]

As in the two-phase system, Mn(III) porphyrin is easily reduced by the conjugated Rh(III) complex in the presence of formate. In ethanol, complex 12 is capable of epoxidizing a-pinene with turnovers in the range of 300/h. The complex is much more stable under the applied reaction conditions than separate manganese porphyrin and rhodium bipyridine complexes and showed only a 10-20% loss of catalyst after 3h as followed by uv-vis spectroscopy. Further studies are being carried out to determine the scope and efficiency of this catalyst. [Pg.306]

A broad range of olefins, acetals, epoxides, alcohols, and chlorides were demonstrated effective alternative starting materials. Cobalt and rhodium carbonyls and bimetallic complexes catalyzed the domino hydroformylation-amidocarbonylation of olefins (17-22). Addition of 0.1 mol% RheCCOie to the cobalt catalyst gave branched AT-acetyltrifluorovaline, which indicated that the hydroformylation step governs the regioselectivity of the domino process (Scheme 4) (22). [Pg.176]


See other pages where Epoxides catalysts, rhodium complexes is mentioned: [Pg.919]    [Pg.239]    [Pg.96]    [Pg.188]    [Pg.188]    [Pg.74]    [Pg.234]    [Pg.919]    [Pg.98]    [Pg.170]    [Pg.304]    [Pg.419]    [Pg.209]    [Pg.570]    [Pg.570]    [Pg.78]    [Pg.593]    [Pg.429]    [Pg.430]    [Pg.179]    [Pg.217]    [Pg.411]    [Pg.570]    [Pg.170]    [Pg.664]    [Pg.207]    [Pg.375]    [Pg.550]    [Pg.229]    [Pg.109]    [Pg.567]    [Pg.14]    [Pg.168]    [Pg.103]    [Pg.117]    [Pg.97]    [Pg.694]    [Pg.702]    [Pg.357]    [Pg.360]   
See also in sourсe #XX -- [ Pg.241 , Pg.273 ]

See also in sourсe #XX -- [ Pg.241 , Pg.273 ]

See also in sourсe #XX -- [ Pg.6 , Pg.241 , Pg.273 ]




SEARCH



Catalyst-epoxide complex

Catalysts epoxidation

Epoxides catalyst

Epoxides complex

Rhodium catalysts catalyst

Rhodium complex catalysts

© 2024 chempedia.info