Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxidation peroxy acid

In the first part of the process, a peroxy acid (RCO3H) reacts with the alkene to form an epoxide. Peroxy acids resemble carboxylic acids in structure, possessing just one additional oxygen atom. Two common peroxy acids are shown below ... [Pg.431]

Epoxides are very easy to prepare via the reaction of an alkene with a peroxy acid This process is known as epoxidation... [Pg.261]

A commonly used peroxy acid is peroxyacetic acid (CH3CO2OH) Peroxyacetic acid is normally used m acetic acid as the solvent but epoxidation reactions tolerate a variety of solvents and are often earned out m dichloromethane or chloroform... [Pg.261]

Peroxy acid and alkene Transition state for oxygen transfer from the OH group of the peroxy acid to the alkene Acetic acid and epoxide ... [Pg.262]

Epoxidation of alkenes with peroxy acids is a syn addition to the double bond Substituents that are cis to each other in the alkene remain cis in the epoxide substituents that are trans in the alkene remain trans m the epoxide... [Pg.262]

As shown m Table 6 4 electron releasing alkyl groups on the double bond increase the rate of epoxidation This suggests that the peroxy acid acts as an electrophilic reagent toward the alkene... [Pg.262]

Epoxidation (Section 6 18) Peroxy acids transfer oxygen to the double bond of alkenes to yield epoxides The reaction IS a stereospecific syn addition... [Pg.273]

When (R) 3 buten 2 ol is treated with a peroxy acid two stereoisomenc epoxides are formed in a 60 40 ratio The minor stereoisomer has the structure shown... [Pg.325]

Epoxidation of alkenes by reaction with peroxy acids... [Pg.676]

The following section describes the preparation of epoxides by the base promoted ring closure of vicinal halohydrms Because vicinal halohydrms are customarily prepared from alkenes (Section 6 17) both methods—epoxidation using peroxy acids and ring closure of halohydrms—are based on alkenes as the starting materials for preparing epoxides... [Pg.676]

Alkene Peroxy acid Epoxide Carboxylic acid... [Pg.693]

Peroxy acids have been seen before as reagents for the epoxidation of alkenes (Section 6 18)... [Pg.736]

Epoxidation (Section 6 18) Conversion of an alkene to an epoxide by treatment with a peroxy acid... [Pg.1283]

Recently (79MI50500) Sharpless and coworkers have shown that r-butyl hydroperoxide (TBHP) epoxidations, catalyzed by molybdenum or vanadium compounds, offer advantages over peroxy acids with regard to safety, cost and, sometimes, selectivity, e.g. Scheme 73, although this is not always the case (Scheme 74). The oxidation of propene by 1-phenylethyl hydroperoxide is an important industrial route to methyloxirane (propylene oxide) (79MI5501). [Pg.116]

Peroxy acid oxidation of alkenes (Sections 6.18 and 16.9) Peroxy acids transfer oxygen to alkenes to yield epoxides. Stereospecific syn addition is observed. [Pg.693]

Toxicity. The peroxy acid is highly toxic and may cause death or permanent injury after very short exposure to small quants (Ref 12) Uses. Peroxyacetic acid is the most important epoxidation reagent used today because of its economical availability and ease of use with a wide variety of reactants (Ref 10). It also finds wide usage as an organic oxidizing agent (Ref 11) Refs 1) Beil 2, 169, (78), [174] [379 ... [Pg.689]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

The preparation of Pans-1,2-cyclohexanediol by oxidation of cyclohexene with peroxyformic acid and subsequent hydrolysis of the diol monoformate has been described, and other methods for the preparation of both cis- and trans-l,2-cyclohexanediols were cited. Subsequently the trans diol has been prepared by oxidation of cyclohexene with various peroxy acids, with hydrogen peroxide and selenium dioxide, and with iodine and silver acetate by the Prevost reaction. Alternative methods for preparing the trans isomer are hydroboration of various enol derivatives of cyclohexanone and reduction of Pans-2-cyclohexen-l-ol epoxide with lithium aluminum hydride. cis-1,2-Cyclohexanediol has been prepared by cis hydroxylation of cyclohexene with various reagents or catalysts derived from osmium tetroxide, by solvolysis of Pans-2-halocyclohexanol esters in a manner similar to the Woodward-Prevost reaction, by reduction of cis-2-cyclohexen-l-ol epoxide with lithium aluminum hydride, and by oxymercuration of 2-cyclohexen-l-ol with mercury(II) trifluoro-acetate in the presence of ehloral and subsequent reduction. ... [Pg.88]

Peroxy acids will react with an aUcene to form an epoxide. The mechanism is somewhat complicated, and may or may not be in your textbook, depending on which textbook you are using. [Pg.294]

Treatment of 51 with an excess of sodium benzoate in DMF resulted in substitution and elimination, to yield the cyclohexene derivative (228, 36%). The yield was low, but 228 was later shown to be a useful compound for synthesis of carba-oligosaccharides. <9-Deacylation of228 and successive benzylidenation and acetylation gave the alkene 229, which was oxidized with a peroxy acid to give a single epoxide (230) in 60% yield. Treatment of 230 with sodium azide and ammonium chloride in aqueous 2-methoxyeth-anol gave the azide (231,55%) as the major product this was converted into a hydroxyvalidamine derivative in the usual manner. On the other hand, an elimination reaction of the methanesulfonate of 231 with DBU in toluene gave the protected precursor (232, 87%) of 203. [Pg.56]

DL-Valiolamine (205) was synthesized from the exo-alkene (247) derived from 51 with silver fluoride in pyridine. Compound 247 was treated with a peroxy acid, to give a single spiro epoxide (248, 89%) which was cleaved by way of anchimeric reaction in the presence of acetate ion to give, after acetylation, the tetraacetate 249. The bromo group was directly displaced with azide ion, the product was hydrogenated, and the amine acety-lated, to give the penta-A, 0-acetyl derivative (250,50%). On the other hand. [Pg.58]

Total synthesis of (+)-validamycins A and B starting from a common synthetic intermediate was elaborated by the following sequence. Tetra-(9-benzyl-(-l-)-valienamine (370), derived from 211, and the di-O-benzyl derivative (371) of the epoxide were coupled in 2-propanol to produce the protected dicarba compound (374), the structure of which was confirmed by conversion into (-1-)-validoxylamine B nonaacetate. Concurrently, compound 372 was glycosylated and the product oxidized with a peroxy acid, to afford a mixture of products from which the desired epoxide (373) was obtained in 70% yield. Coupling of 370 with 373 in 2-propanol at 120° afforded two carba-trisaccharides, and the major product (47%) was depro-tected and characterized as the dodecaacetate of validamycin B. The pro-... [Pg.78]

The rate of epoxidation of alkenes is increased by alkyl groups and other ERG substituents and the reactivity of the peroxy acids is increased by EWG substituents.72 These structure-reactivity relationships demonstrate that the peroxyacid acts as an electrophile in the reaction. Decreased reactivity is exhibited by double bonds that are conjugated with strongly electron-attracting substituents, and more reactive peroxyacids, such as trifluoroperoxyacetic acid, are required for oxidation of such compounds.73 Electron-poor alkenes can also be epoxidized by alkaline solutions of... [Pg.1091]

There have been a number of computational studies of the epoxidation reaction. These studies have generally found that the hydrogen-bonded peroxy acid is approximately perpendicular to the axis of the double bond, giving a spiro structure.75 Figure 12.8 shows TS structures and Ea values based on B3LYP/6-31G computations. The Ea trend is as expected for an electrophilic process OCH3 < CH3 CH = CH2 < H < CN. Similar trends were found in MP4/6-31G and QCISD/6-31G computations. [Pg.1092]

Scheme 12.11. Synthesis of Epoxides from Alkenes Using Peroxy Acids... Scheme 12.11. Synthesis of Epoxides from Alkenes Using Peroxy Acids...

See other pages where Epoxidation peroxy acid is mentioned: [Pg.262]    [Pg.693]    [Pg.481]    [Pg.363]    [Pg.86]    [Pg.116]    [Pg.123]    [Pg.262]    [Pg.739]    [Pg.197]    [Pg.96]    [Pg.1052]    [Pg.140]    [Pg.480]    [Pg.1091]   
See also in sourсe #XX -- [ Pg.642 ]




SEARCH



Epoxidation acids

Epoxides acids

Peroxy

Peroxy acids

© 2024 chempedia.info