Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymes production sources

The basal medium of Mandels (Mandels et al., 1976) was used with the following modifications it was buffered with 3 g/1 of sodium nitrate to pH 5.5 and supplemented with 1% w/v citrus pectin " Sigma" or other carbon sources. For enzyme production, 50 ml medium in 250 ml erlemneyer flasks were inoculatedwith spores (10 spores /ml ) exept for the non sporulating Pol 6 strain, where mycelium was used. The culture were incubated at 30° C on a rotary shaker (150 rev mn -1) for 5 days. The culture broth was filtered (Millipore 0.45 pm ) and the supernatant was analysed for pectinolytic activities, reducing sugars and proteins. [Pg.922]

Bacteria represent a promising source for the production of industrial enzymes. Bacterial cellulases are an especialfy interesting case in point. Many thermophilic bacterial species produce cellulases that are stable and active at high temperature, resistant to proteolytic attack, and stable to mechanical and chemical denaturation. However, cellulase productivities in bacteria are notoriously low compared to other microbial sources. In this paper bacterial enzyme production systems will be discussed with a focus on comparisons of the productivities of known bacterial cellulase producers. In an attempt to draw conclusions concerning the regulation of cellulase synthesis in bacterial systems, a tentative model for regulation in Acidothennus cellulofyticus has been developed. [Pg.331]

Trichoderma reesei RUT C30 is known to be one of the best hyperpro-ducing cellulolytic fungi. Several factors, such as the amount and quality of carbon source, temperature and pH of the cultivation, and aeration, influence enzyme production of this strain. It has been indicated in previous studies that pH and the pH-controlling strategy have a great effect on the amount of cellulase produced (1-9). [Pg.202]

Tailoring Opportunities. There are many methods or approaches available to tailor enzyme products. Early in the history of enzyme companies, methods such as source selection, microbial strain selection, growth conditions, media, purification, and recovery systems, were primarily used to make each enzyme preparation unique. Later, immobilization, encapsulation, and chemical modification of the enzyme molecule itself were added as methods of tailoring enzymes to better fit industrial applications. Today, all of these methods are still being used, and now we have added genetic engineering to our tailoring expertises. [Pg.28]

Figure 4-18 Major Steps in Enzymic Starch Conversion. Source Reprinted from H.S. Olsen, Enzymic Production of Glucose Syrups, in Handbook of Starch Hydrolysis Products and Their Derivatives, M.W. Kearsley and S.Z. Dziedzic, eds., p. 30, 1995, Aspen Publishers, Inc. Figure 4-18 Major Steps in Enzymic Starch Conversion. Source Reprinted from H.S. Olsen, Enzymic Production of Glucose Syrups, in Handbook of Starch Hydrolysis Products and Their Derivatives, M.W. Kearsley and S.Z. Dziedzic, eds., p. 30, 1995, Aspen Publishers, Inc.
Some of the traditionally used industrial enzymes (e.g., rennet and papain) are prepared from animal and plant sources. Recent developments in industrial enzyme production have emphasized the microbial enzymes (Frost 1986). Microbial enzymes are very heat stable and have a broader pH optimum. Most of these enzymes are made by submerged cultivation of highly developed strains of microorganisms. Developments in... [Pg.288]

The wide distribution of PKSs in the microbial world and the extreme chemical diversity of their products do in fact result from a varied use of the well-known catalytic domains described above for the canonical PKS systems. Taking a theoretic view of polyketide diversity, Gonzalez-Lergier et al. (41) have suggested that even if the starter and extender units are fixed, over 100,000 linear heptaketide structures are possible using only the 5 common reductive outcomes at the P-carbon position (ketone, (R- or S-) alcohol, trans-double bond, or alkane). Recently, it has become apparent that even this does not represent the upper limit for polyketide diversification. To create chemical functionalities beyond those mentioned above, nature has recruited some enzymes from sources other than fatty acid synthesis (the mevalonate pathway in primary metabolism is one example) not typically thought of as type I PKS domains. Next, we explore the ways PKS-containing systems have modified these domains for the catalysis of some unique chemistries observed in natural products. [Pg.1530]


See other pages where Enzymes production sources is mentioned: [Pg.321]    [Pg.769]    [Pg.893]    [Pg.894]    [Pg.253]    [Pg.204]    [Pg.378]    [Pg.83]    [Pg.333]    [Pg.585]    [Pg.637]    [Pg.72]    [Pg.456]    [Pg.371]    [Pg.442]    [Pg.288]    [Pg.298]    [Pg.317]    [Pg.323]    [Pg.213]    [Pg.115]    [Pg.167]    [Pg.204]    [Pg.300]    [Pg.303]    [Pg.305]    [Pg.393]    [Pg.109]    [Pg.110]    [Pg.448]    [Pg.450]    [Pg.206]    [Pg.37]    [Pg.133]    [Pg.133]    [Pg.79]    [Pg.195]    [Pg.4124]    [Pg.72]    [Pg.812]    [Pg.848]    [Pg.1191]   
See also in sourсe #XX -- [ Pg.540 ]




SEARCH



Enzyme productivities

Enzymes products

Enzymic Production

Production sourcing

© 2024 chempedia.info