Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enzymatic synthesis of functional phenolic polymers

Poly(2,6-dimethyl-l,4-oxyphenylene) (poly(phenylene oxide), PPG) is a material widely used as high-performance engineering plastics, thanks to its excellent chemical and physical properties, e.g., a high 7 (ca. 210°C) and mechanically tough property. PPO was first prepared from 2,6-dimethylphenol monomer using a copper/amine catalyst system. 2,6-Dimethylphenol was also polymerized via HRP catalysis to give a polymer exclusively consisting of 1,4-oxyphenylene unit, while small amounts of Mannich-base and 3,5,3, 5 -tetramethyl-4,4 -diphenoquinone units are always contained in the chemically prepared PPO. [Pg.233]

New positive-type photoresist systems based on enzymatically synthesized phenolic polymers were developed. The polymers from the bisphenol monomers [Pg.233]

Phenolic copolymers containing fluorophores (fluoroscein and calcein) were synthesized by SBP catalysis and used as array-based metal-ion sensor. Selectivity and sensitivity for metal ions could be controlled by changing the polymer components. Combinatorial approach was made for efficient screening of specific sensing of the metals. [Pg.236]

A polynucleoside with an unnatural polymeric backbone was synthesized by SBP-catalyzed oxidative polymerization of thymidine 5 -p-hydroxyphenylacetate. Chemoenzymafic synthesis of a new class of poly(amino acid), poly(tyrosine) containing no peptide bonds, was achieved by the peroxidase-catalyzed oxidative polymerization of tyrosine ethyl esters, followed by alkaline hydrolysis. Amphiphile higher alkyl ester derivatives were also polymerized in [Pg.236]

Morphology of the enzymatically synthesized phenolic polymers was controlled under the selected reaction conditions. Monodisperse polymer particles in the sub-micron range were produced by HRP-catalyzed dispersion polymerization of phenol in 1,4-dioxane-phosphate buffer (3 2 v/v) using poly(vinyl methyl ether) as stabihzer. °° ° The particle size could be controlled by the stabilizer concentration and solvent composition. Thermal treatment of these particles afforded uniform carbon particles. The particles could be obtained from various phenol monomers such as m-cresol and p-phenylphenol. [Pg.238]


See other pages where Enzymatic synthesis of functional phenolic polymers is mentioned: [Pg.233]   


SEARCH



Enzymatic polymer synthesis

Functional synthesis

Functionalization of polymers

Functionalized synthesis

Functions synthesis

Phenol functions

Phenol polymers

Phenol synthesis

Phenolic function

Phenolic functional polymer enzymatic synthesi

Phenolic polymer enzymatic synthesis

Phenolic polymers

Phenolics synthesis

Polymers enzymatically

Synthesis of Functionalized Polymers

Synthesis of functional polymers

Synthesis of phenol

Synthesis of polymers

© 2024 chempedia.info