Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.4- Enyn-3-ones

In the two separate, initial reports on the reactivity of Fischer carbenes with enynes, one study found cyclobutanone and furan products [59], while the other found products due to olefin metathesis [60]. These products have turned out to be the exceptions rather than the rule, as enynes have since been found to react with Fischer carbenes to produce bicyclic cyclopropanes quite generally. The proposed mechanistic pathway is included as part of Bq. (28), in which vinylcarbene 10, produced by insertion of the alkyne into the metal carbene, may then cyclize with the pendant olefin to metallacyclobutane 11, leading to product. The first reported version of this reaction suffered from extreme sensitivity to olefin substitution [Eq. (28) compare R=H, Me] often producing side-products due to metathesis (through 11 to yield dienes) and CO insertion (into 10 to yield cyclobutanones and furans) [61]. Since then, several important modifications have been developed which improve yield, provide greater tolerance for alkene substitution, and increase chemoselectivity for the bicyclic cyclopropane... [Pg.151]

In the alkylative cyclization of the 1,6-enyne 372 with vinyl bromide, formation of both the five-membered ring 373 by exn mode carbopalladation and isomerization of the double bonds and the six-membered ring 374 by endo mode carbopalladation are observed[269]. Their ratio depends on the catalytic species. Also, the cyclization of the 1,6-enyne 375 with /i-bromostyrene (376) affords the endo product 377. The exo mode cyclization is commonly observed in many cases, and there are two possible mechanistic explanations for that observed in these examples. One is direct endo mode carbopalladation. The other is the exo mode carbopalladation to give 378 followed by cyclopropana-tion to form 379, and the subsequent cyclopropylcarbinyl-homoallyl rearrangement affords the six-membered ring 380. Careful determination of the E or Z structure of the double bond in the cyclized product 380 is crucial for the mechanistic discussion. [Pg.180]

The cyclization of l-alkoxybut-l-en-3-ynes with hydrazine was first achieved by Franke and Kraft (55AG395). By heating 1-methoxybut- l-en-3-yne with hydrazine sulfate in an aqueous alcohol medium they obtained 3(5)-methylpyrazole (13) in high yield. Winter (63HCA1754) used the cyclization of 1-methoxybut-l-en-3-yne with hydrazine hydrate and phenylhydrazine to establish the structure of the initial enyne ether [in this case a mixture of l-phenyl-3(5)-propylpyrazoles was obtained]. The reaction with hydrazine sulfate gives only one product, 3(5)-propyl-pyr azole. [Pg.186]

Evidently, pathway 1 is a major one for the enyne amines (90%) and prevailing one for the enyne ethers (70%). [Pg.198]

Compounds with more than one triple bond are called diyne.s, triynes, and so forth compounds containing both double and triple bonds are called enynes (not ynenes). Numbering of an enyne chain starts from the end nearer the first multiple bond, whether double or triple. When there is a choice in numbering, double bonds receive lower numbers than triple bonds. For example ... [Pg.260]

Recently, Aumann et al. reported that rhodium catalysts enhance the reactivity of 3-dialkylamino-substituted Fischer carbene complexes 72 to undergo insertion with enynes 73 and subsequent formation of 4-alkenyl-substituted 5-dialkylamino-2-ethoxycyclopentadienes 75 via the transmetallated carbene intermediate 74 (Scheme 15, Table 2) [73]. It is not obvious whether this transformation is also applicable to complexes of type 72 with substituents other than phenyl in the 3-position. One alkyne 73, with a methoxymethyl group instead of the alkenyl or phenyl, i.e., propargyl methyl ether, was also successfully applied [73]. [Pg.33]

While diene metathesis or diyne metathesis are driven by the loss of a (volatile) alkene or alkyne by-product, enyne metathesis (Fig. 2) cannot benefit from this contributing feature to the AS term of the reaction, since the event is entirely atom economic. Instead, the reaction is driven by the formation of conjugated dienes, which ensures that once these dienes have been formed, the process is no longer a reversible one. Enyne metathesis can also be considered as an alkylidene migration reaction, because the alkylidene unit migrates from the alkene part to one of the alkyne carbons. The mechanism of enyne metathesis is not well described, as two possible complexation sites (alkene or alkyne) exist for the ruthenium carbene, leading to different reaction pathways, and the situation is further complicated when the reaction is conducted under an atmosphere of ethylene. Despite its enormous potential to form mul-... [Pg.272]

Rings of four, five, and six members were obtained in high yield seven-membered rings in lower yield. When the reaction is applied to enynes, compounds similar to 57 but with only one double bond are obtained. ... [Pg.1021]

Answer This compound has one double bond and one triple bond. For the double bond, we use the term en. For the triple bond, we use the term yn. Double bonds get listed first, so this compound is -enyn-. [Pg.87]

The weaker Lewis add TMSOTf 20 as catalyst gives, after 2 h at 0°C in CH2CI2, a 20 80 mixture of 805 and 806 in only 23% yield (Scheme 6.8). But this yield will probably increase either on longer reaction time at 0°C or on shorter reaction time at 25 °C On replacing one of the methyl groups in 804 by an acetylene substituent the resulting enyne adds allyltrimethylsilane 82 or anisole in the presence of TMSOTf 20 to give allenes [18]. Substituted allyltrimethylsilanes such as 808 react with the allylic silylether 807 after 70 h at 25 °C in 62% yield to a 41 59 mixture of 809 and 810 as well as 7 [17]. Closely related additions of 82 to allylic ethers or O-acetates are discussed in Refs. 17a-c. [Pg.139]

Complex 38 also turned out to be an efficient catalyst for cycloisomerization reactions of enynes 41 (Scheme 8) [16, 17]. This seems reasonable if one considers the fact that Fe(0) is isoelectronic to Rh(+1), which is also a catalyst for Alder-ene cycloisomerizations [18, 19]. [Pg.187]

The first one, (A), includes (b) insertion of CO into the Pd-S bond (c) insertion of the C C triple bond of the enyne into the Pd-C(0)SR bond whereby Pd binds to the terminal carbon and the RSC(O) group to the internal carbon, and (d) C-H bond-forming reductive elimination or protolysis by the thiol to form 29 (Scheme 7-7). [Pg.226]

As predicted from the comparative rates for C=C over C=C hydrozirconation cited earlier, a (poly)enyne is selectively hydrozirconated at the alkyne moiety, whatever the position of the alkene function [138, 210] in the molecule. It can be exempUfied by the chemoselective hydrozirconation of 1,3-butenyne. One exception to this chemoselectivity has been reported, which showed the terminal alkene to react with 1 but leaving the TMS-substituted alkyne function intact (Scheme 8-25). [Pg.269]

One productive facet of Pd-catalyzed domino reactions is the cycloisomerization of enynes and allenes, as shown by Trost and coworkers [19]. Thus, transformation of the dienyne 6/1-10 using Pd(OAc)2 led to 6/1-13 in 72% yield, in which the last step is a Diels-Alder reaction of the intermediate 6/1-12 (Scheme 6/1.2). [Pg.361]

Bromoalkynes also couple with vinylstannanes readily to result in enynes. Synthesis of protected enynals via cross-coupling of vinylstannanes with 1-bromoalkynes in the presence of a catalytic amount of Pd(II) has been reported (equation 143)252. Hiyama and coworkers extended the Stille methodology for sequential three-component coupling of trimethylstannyl(trimethylsilyl)acetylene with a vinyl iodide in the first step and cross-coupling of the intermediate trimethylsilylethyne with another alkenyl iodide in the presence of tris(diethylamino)sulphonium trimethyldifluorosilicate in the second step to generate a dienyne (equation 144)253. Both steps occur under palladium catalysis, in one-pot, to result in stereodefined l,5-dien-3-ynes. [Pg.446]

Based on his previous work on the catalytic double addition of diazo compounds to alkynes173 using Cp RuCl(COD),174 Dixneuf has developed an efficient one-step synthesis of alkenyl bicyclo[3.1.0]-hexane derivatives of type 163 from enyne precursors 162 (Scheme 43). The catalytic cycle starts with the formation of an Ru=CHR species. It then adds to an alkyne to form ruthenacyclobutene 166, which evolves into vinylcarbene 167. [2 + 2]-Cycloaddition of 167 gives ruthenacyclobutane 168. The novelty in this transformation is the subsequent reductive elimination to give 170 without leading to the formation of diene 169. This can be attributed to the steric hindrance of the CsMes-Ru group. [Pg.321]

For the synthesis of heterocycles, an efficient strategy has been introduced utilizing the dual transition metal sequences (Scheme 6).11,lla The key issue is the compatibility of the two catalyst systems. Jeong et al. studied the one-pot preparation of bicyclopentenone 35 from propargylsulfonamide 33 and allylic acetate.11 This transformation includes two reactions the first palladium-catalyzed allylation of 33 generates an enyne 34 and the following Pauson-Khand type reaction (PKR) of 34 yields a bicyclopentenone 35. The success of this transformation reflects the right combination of catalysts which are compatible with each other because the allylic amination can be facilitated by the electron-rich palladium(O) catalyst and the PKR needs a Lewis-acidic catalyst. Trost et al. reported the one-pot enantioselective... [Pg.699]

Enyne metathesis is unique and interesting in synthetic organic chemistry. Since it is difficult to control intermolecular enyne metathesis, this reaction is used as intramolecular enyne metathesis. There are two types of enyne metathesis one is caused by [2+2] cycloaddition of a multiple bond and transition metal carbene complex, and the other is an oxidative cyclization reaction caused by low-valent transition metals. In these cases, the alkyli-dene part migrates from alkene to alkyne carbon. Thus, this reaction is called an alkylidene migration reaction or a skeletal reorganization reaction. Many cyclized products having a diene moiety were obtained using intramolecular enyne metathesis. Very recently, intermolecular enyne metathesis has been developed between alkyne and ethylene as novel diene synthesis. [Pg.142]

Enyne metathesis is caused by transition metals. There are two types of enyne metathesis one is caused by a carbene complex, as is olefin metathesis, via [2+2] cocyclization and the other type is a reaction that proceeds via oxidative cycli-zation by a low-valent transition metal complex (Scheme 2). [Pg.143]

The tandem zirconocene-induced co-cyclization of dienes or enynes/insertion of allyl carbenoid/addition of electrophile is a powerful method for assembling organic structures. Two illustrations of its application are the synthesis of the dollabelane natural product acetoxyodontoschismenol 99 [57,62,63] and the one-pot construction of linear terpenoids 100 (Scheme 3.25) [59,64],... [Pg.97]

In Section 9.2, intermolecular reactions of titanium—acetylene complexes with acetylenes, allenes, alkenes, and allylic compounds were discussed. This section describes the intramolecular coupling of bis-unsaturated compounds, including dienes, enynes, and diynes, as formulated in Eq. 9.49. As the titanium alkoxide is very inexpensive, the reactions in Eq. 9.49 represent one of the most economical methods for accomplishing the formation of metallacycles of this type [1,2]. Moreover, the titanium alkoxide based method enables several new synthetic transformations that are not viable by conventional metallocene-mediated methods. [Pg.342]


See other pages where 1.4- Enyn-3-ones is mentioned: [Pg.206]    [Pg.210]    [Pg.230]    [Pg.247]    [Pg.281]    [Pg.236]    [Pg.281]    [Pg.137]    [Pg.188]    [Pg.168]    [Pg.460]    [Pg.476]    [Pg.7]    [Pg.194]    [Pg.197]    [Pg.150]    [Pg.153]    [Pg.162]    [Pg.269]    [Pg.255]    [Pg.270]    [Pg.274]    [Pg.319]    [Pg.74]    [Pg.339]    [Pg.194]    [Pg.159]    [Pg.438]    [Pg.254]    [Pg.337]    [Pg.346]    [Pg.815]    [Pg.31]    [Pg.35]   


SEARCH



Enynes

© 2024 chempedia.info