Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enthalpy vibrational

Figure 3-1. Example of the variation in enthalpy, vibrational and configurational entropy, and Gibbs energy with the concentration of vacancies in an elemental solid. Figure 3-1. Example of the variation in enthalpy, vibrational and configurational entropy, and Gibbs energy with the concentration of vacancies in an elemental solid.
Translational Enthalpy Rotational Enthalpy Vibrational Enthalpy gas constant (RT) Translational Entropy Rotational Entropy Vibrational Entropy ... [Pg.340]

Figure C3.5.1. (a) Vibrational energy catalyses chemical reactions. The reactant R is activated by taking up the enthalpy of activation j //Trom the bath. That energy plus the heat of reaction is returned to the bath after barrier... Figure C3.5.1. (a) Vibrational energy catalyses chemical reactions. The reactant R is activated by taking up the enthalpy of activation j //Trom the bath. That energy plus the heat of reaction is returned to the bath after barrier...
Very early force fields were used in an attempt to calculate structures, enthalpies of formation, and vibrational spectra, but it was soon found that accuracy suffered severely in either the structure-energy calculations or the vibrational spectra. Force constants were, on the whole, not transferable from one field to another. The result was that early force fields evolved so as to calculate either structure and energy or spectra, but not both. [Pg.161]

A force field that can produce vibrational spectra has a second advantage in that the Ay// calculations can be put on a much more satisfactory theoretical base by calculating an enthalpy of formation at 0 K as in ab initio procedures and then adding various thermal energies by more r igorous means than simply lumping them in with empirical bond enthalpy contributions to Ay//-. The stronger the theoretical base, the less likely is an unwelcome surprise in the output. [Pg.162]

The difference between the energy of a molecule at 0 K and its enthalpy at 298 depends on the thermal contr ibution due to vibration at the two temperatures. If the molecule in question is rigid, with few vibrational degrees of freedom, this contribution will be small, as it is for propene and cyclopropane. For larger molecules with a good deal of vibrational freedom, the difference will be conespondingly larger. [Pg.322]

The consistent force field (CFF) was developed to yield consistent accuracy of results for conformations, vibrational spectra, strain energy, and vibrational enthalpy of proteins. There are several variations on this, such as the Ure-Bradley version (UBCFF), a valence version (CVFF), and Lynghy CFF. The quantum mechanically parameterized force field (QMFF) was parameterized from ah initio results. CFF93 is a rescaling of QMFF to reproduce experimental results. These force fields use five to six valence terms, one of which is an electrostatic term, and four to six cross terms. [Pg.54]

Molecular enthalpies and entropies can be broken down into the contributions from translational, vibrational, and rotational motions as well as the electronic energies. These values are often printed out along with the results of vibrational frequency calculations. Once the vibrational frequencies are known, a relatively trivial amount of computer time is needed to compute these. The values that are printed out are usually based on ideal gas assumptions. [Pg.96]

Vibrational frequencies Rotational enthalpy and entropy Vibrational enthalpy and entropy Translational enthalpy and entropy... [Pg.246]

Molecular Nature of Steam. The molecular stmcture of steam is not as weU known as that of ice or water. During the water—steam phase change, rotation of molecules and vibration of atoms within the water molecules do not change considerably, but translation movement increases, accounting for the volume increase when water is evaporated at subcritical pressures. There are indications that even in the steam phase some H2O molecules are associated in small clusters of two or more molecules (4). Values for the dimerization enthalpy and entropy of water have been deterrnined from measurements of the pressure dependence of the thermal conductivity of water vapor at 358—386 K (85—112°C) and 13.3—133.3 kPa (100—1000 torr). These measurements yield the estimated upper limits of equiUbrium constants, for cluster formation in steam, where n is the number of molecules in a cluster. [Pg.354]

To compute zero-point vibration and thermal energy corrections to total energies as well as other thermodynamic quantities of interest such and the enthalpy and entropy of the system. [Pg.61]

The vibrational enthalpy consists of two parts, the first is a sum of hv/2 contributions, this is the zero-point energies. The second part depends on temperature, and is a contribution from molecules which are not in the vibrational ground state. This contribution goes toward zero as the temperature goes to zero when all molecules are in the ground state. Note also that the sum over vibrational frequencies runs over 3Ai — 6 for the reactant(s), but only 3A1 — 7 for the TS. At the TS, one of the normal vibrations has been transformed into the reaction coordinate, which formally has an imaginary frequency. [Pg.303]

The above treatment has made some assumptions, such as harmonic frequencies and sufficiently small energy spacing between the rotational levels. If a more elaborate treatment is required, the summation for the partition functions must be carried out explicitly. Many molecules also have internal rotations with quite small barriers, hi the above they are assumed to be described by simple harmonic vibrations, which may be a poor approximation. Calculating the energy levels for a hindered rotor is somewhat complicated, and is rarely done. If the barrier is very low, the motion may be treated as a free rotor, in which case it contributes a constant factor of RT to the enthalpy and R/2 to the entropy. [Pg.306]

In some cases there is evidence of multiple solid-solid transitions, either crystal-crystal polymorphism (seen for Cl salts [20]) or, more often, formation of plastic crystal phases - indicated by solid-solid transitions that consume a large fraction of the enthalpy of melting [21], which also results in low-energy melting transitions. The overall enthalpy of the salt can be dispersed into a large number of fluxional modes (vibration and rotation) of the organic cation, rather than into enthalpy of fusion. Thus, energetically, crystallization is often not overly favored. [Pg.44]

Use the estimates of molar constant-volume heat capacities given in the text (as multiples of R) to estimate the change in reaction enthalpy of N2(g) + 3 H,(g) —> 2 NH.(g) when the temperature is increased from 300. K to 500. K. Ignore the vibrational contributions to heat capacity. Is the reaction more or less exothermic at the higher temperature ... [Pg.383]

The steric environment of the atoms in the vicinity of the reaction centre will change in the course of a chemical reaction, and consequently the potential energy due to non-bonded interactions will in general also change and contribute to the free energy of activation. The effect is mainly on the vibrational energy levels, and since they are usually widely spaced, the contribution is to the enthalpy rather than the entropy. When low vibrational frequencies or internal rotations are involved, however, effects on entropy might of course also be expected. In any case, the rather universal non-bonded effects will affect the rates of essentially all chemical reactions, and not only the rates of reactions that are subject to obvious steric effects in the classical sense. [Pg.2]

MMl represents the mass and moment-of-inertia term that arises from the translational and rotational partition functions EXG, which may be approximated to unity at low temperatures, arises from excitation of vibrations, and finally ZPE is the vibrational zero-point-energy term. The relation between these terms and the isotopic enthalpy and entropy differences may be written... [Pg.10]

Billmers and Smith recorded the UV-Vis absorption spectra of sulfur vapor at various pressures (9-320 Torr or 1.2-42.7 kPa) and temperatures (670-900 K) but failed in obtaining the correct reaction enthalpy for the interconversion of S3 and S4 from the absorption intensities [19]. The molar extinction coefficient of S3 at 400 nm exceeds that of S4 at 520 nm by more than one order of magnitude. While the S3 absorption band at 360-440 nm exhibits a vibrational fine structme, the two broad S4 absorption bands at... [Pg.35]

Many workers have offered the opinion that the isokinetic relationship is confined to reactions in condensed phase (6, 122) or, more specially, may be attributed to solvation effects (13, 21, 37, 43, 56, 112, 116, 124, 126-130) which affect both enthalpy and entropy in the same direction. The most developed theories are based on a model of the half-specific quasi-crystalline solvation (129, 130), or of the nonideal conformal solutions (126). Other explanations have been given in terms of vibrational frequencies involving solute and solvent (13, 124), temperature dependence of solvent fluidity in the quasi-crystalline model (40), or changes of enthalpy and entropy to produce a hole in the solvent (87). [Pg.461]

An informative IR spectrum of the t-butyl radical, containing 18 bands, has been recorded after freezing of the products of vacuum pyrolysis of azoisobutane [110] and 2-nitrosoisobutane [111] in an argon matrix at 10 K (Pacansky and Chang, 1981). This spectrum is in agreement with a pyramidal structure of the radical (CH3)3C (symmetry C3v) which has elongated CH bonds in positions trans to the radical centre. On the basis of experimental vibrational frequencies and ab initio calculations of the radical geometry the enthalpy value [// (300)] of its formation has been calculated as 44 kJ moP. ... [Pg.33]

ALL CHANGES IN PHASE involve a release or absorption of calories. One reason for this is that each solid has its own heat capacity. That is, there is a characteristic heat content for each material which depends upon the atoms composing the solid, the nature of the lattice vibrations within it, and its structure. The total heat content, or enthalpy, of each solid is defined by ... [Pg.358]

The force fields used for our purposes (simultaneous calculation of relative enthalpies, geometries and vibrational frequencies) are all of the type given in Eq. (2) or (4) (or a mixture of both types) with one important additional term which represents so-called nonbonded interactions (Vnb ). Two analytical formulations are in use for... [Pg.166]


See other pages where Enthalpy vibrational is mentioned: [Pg.23]    [Pg.23]    [Pg.3033]    [Pg.3034]    [Pg.268]    [Pg.292]    [Pg.93]    [Pg.146]    [Pg.146]    [Pg.262]    [Pg.270]    [Pg.203]    [Pg.47]    [Pg.51]    [Pg.133]    [Pg.656]    [Pg.657]    [Pg.92]    [Pg.123]    [Pg.185]    [Pg.2]    [Pg.229]    [Pg.365]    [Pg.74]    [Pg.151]    [Pg.248]    [Pg.345]    [Pg.40]    [Pg.713]   
See also in sourсe #XX -- [ Pg.303 , Pg.304 ]




SEARCH



© 2024 chempedia.info