Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational-rotational frequencies

The high extent of monochromaticity ensures a highly selective action on molecules, for instance, by inducing transitions only between one pair of rotational states. Since the laser line width is often smaller than the isotopic shift of molecular vibration-rotational frequencies, it appears possible to act selectively on iso-topicaUy substituted molecules. This is the basis of laser isotope separation [22, 77, 215, 267]. [Pg.147]

To calculate N (E-Eq), the non-torsional transitional modes have been treated as vibrations as well as rotations [26]. The fomier approach is invalid when the transitional mode s barrier for rotation is low, while the latter is inappropriate when the transitional mode is a vibration. Hamionic frequencies for the transitional modes may be obtained from a semi-empirical model [23] or by perfomiing an appropriate nomial mode analysis as a fiinction of the reaction path for the reaction s potential energy surface [26]. Semiclassical quantization may be used to detemiine anliamionic energy levels for die transitional modes [27]. [Pg.1016]

While a laser beam can be used for traditional absorption spectroscopy by measuring / and 7q, the strength of laser spectroscopy lies in more specialized experiments which often do not lend themselves to such measurements. Other techniques are connnonly used to detect the absorption of light from the laser beam. A coimnon one is to observe fluorescence excited by the laser. The total fluorescence produced is nonnally proportional to the amount of light absorbed. It can be used as a measurement of concentration to detect species present in extremely small amounts. Or a measurement of the fluorescence intensity as the laser frequency is scaimed can give an absorption spectrum. This may allow much higher resolution than is easily obtained with a traditional absorption spectrometer. In other experiments the fluorescence may be dispersed and its spectrum detennined with a traditional spectrometer. In suitable cases this could be the emission from a single electronic-vibrational-rotational level of a molecule and the experimenter can study how the spectrum varies with level. [Pg.1123]

The homonuclear rare gas pairs are of special interest as models for intennolecular forces, but they are quite difficult to study spectroscopically. They have no microwave or infrared spectmm. However, their vibration-rotation energy levels can be detennined from their electronic absorjDtion spectra, which he in the vacuum ultraviolet (VUV) region of the spectmm. In the most recent work, Hennan et al [24] have measured vibrational and rotational frequencies to great precision. In the case of Ar-Ar, the results have been incoriDorated into a multiproperty analysis by Aziz [25] to develop a highly accurate pair potential. [Pg.2447]

Here, I(co) is the Fourier transform of the above C(t) and AEq f is the adiabatic electronic energy difference (i.e., the energy difference between the v = 0 level in the final electronic state and the v = 0 level in the initial electronic state) for the electronic transition of interest. The above C(t) clearly contains Franck-Condon factors as well as time dependence exp(icOfvjvt + iAEi ft/h) that produces 5-function spikes at each electronic-vibrational transition frequency and rotational time dependence contained in the time correlation function quantity <5ir Eg ii,f(Re) Eg ii,f(Re,t)... [Pg.426]

Infrared absorption properties of 2-aminothiazole were reported with those of 52 other thiazoles (113). N-Deuterated 2-aminothiazole and 2-amino-4-methylthiazo e were submitted to intensive infrared investigations. All the assignments were performed using gas-phase studies of the shape of the vibration-rotation bands, dichroism, isotopic substitution, and separation of frequencies related to H-bonded and free species (115). With its ten atoms, this compound has 24 fundamental vibrations 18 for the skeleton and 6 for NHo. For the skeleton (Cj symmetry) 13 in-plane vibrations of A symmetry (2v(- h, 26c-h- Irc-N- and 7o)r .cieu.J and... [Pg.23]

Suites 1 to VIII contain infrared frequencies corresponding to vibration-rotation bands of A, B, or (A-l-B) hybrid types and can thus be assigned to vibrations of A symmetry the corresponding Raman lines are generally polarized. [Pg.66]

The frequencies classified in suites IX and X belong to depolarized Raman lines and correspond to vibrations-rotation bands of the C type. They can be assigned to oscillations of A" symmetry. [Pg.66]

If there are real frequencies of the same magnitude as the rotational frequencies , mixing may occur and result in inaccurate values for the true vibrations. For this reason the translational and rotational degrees of freedom are nonnally removed from the force constant matrix before diagonalization. This may be accomplished by projecting the modes out. Consider for example tire following (normalized) vector describing a translation in the x-direction. [Pg.313]

Process rolls are commonly found in paper machines and other continuous process applications. Process rolls generate few unique vibration frequencies. In most cases, the only vibration frequencies generated are running speed and bearing rotational frequencies. [Pg.711]

Chapter 3 is devoted to pressure transformation of the unresolved isotropic Raman scattering spectrum which consists of a single Q-branch much narrower than other branches (shaded in Fig. 0.2(a)). Therefore rotational collapse of the Q-branch is accomplished much earlier than that of the IR spectrum as a whole (e.g. in the gas phase). Attention is concentrated on the isotropic Q-branch of N2, which is significantly narrowed before the broadening produced by weak vibrational dephasing becomes dominant. It is remarkable that isotropic Q-branch collapse is indifferent to orientational relaxation. It is affected solely by rotational energy relaxation. This is an exceptional case of pure frequency modulation similar to the Dicke effect in atomic spectroscopy [13]. The only difference is that the frequency in the Q-branch is quadratic in J whereas in the Doppler contour it is linear in translational velocity v. Consequently the rotational frequency modulation is not Gaussian but is still Markovian and therefore subject to the impact theory. The Keilson-... [Pg.6]

The origin of the rotational structure of the isotropic Q-branch (Av = 0, Aj = 0) is connected with the dependence of the vibrational transition frequency shift on rotational quantum number j [121, 126]... [Pg.93]

Here te, tc are the correlation times of rotational and vibrational frequency shifts. The isotropic scattering spectrum corresponding to Eq. (3.15) is the Lorentzian line of width Acoi/2 = w0 + ydp- Its maximum is shifted from the vibrational transition frequency by the quantity coq due to the collapse of rotational structure and by the quantity A due to the displacement of the vibrational levels in a medium. [Pg.96]

Molecules also possess internal degrees of freedom, namely vibration and rotation. The vibrational energy levels in the harmonic oscillator approximation of a vibration with frequency hv are given by... [Pg.89]

Assignments. - Electric modulation of vibrational rotational bands of polar molecules included a study of phosphine.120 Ringbending (puckering) transition frequencies have been measured for the phospholene (42) for the ground and excited states.121 The PD deformation band for the sulphide (43) has been assigned.122... [Pg.405]

In a nonattaching gas electron, thermalization occurs via vibrational, rotational, and elastic collisions. In attaching media, competitive scavenging occurs, sometimes accompanied by attachment-detachment equilibrium. In the gas phase, thermalization time is more significant than thermalization distance because of relatively large travel distances, thermalized electrons can be assumed to be homogeneously distributed. The experiments we review can be classified into four categories (1) microwave methods, (2) use of probes, (3) transient conductivity, and (4) recombination luminescence. Further microwave methods can be subdivided into four types (1) cross modulation, (2) resonance frequency shift, (3) absorption, and (4) cavity technique for collision frequency. [Pg.250]

Emission or absorption spectra are produced when molecules undergo transitions between quantum states that correspond to two different internal energies. The energy difference AE between the states is related to the frequency of the radiation emitted or absorbed by the equation DE = hn. Infrared frequencies in the wavelength range 1-50 mm are associated with molecular vibration and vibration-rotation spectra. [Pg.76]

The Raman effect is produced when the frequency of visible light is changed in the scattering process by the absorption or emission of energy produced by changes in molecular vibration and vibration-rotation quantum states. [Pg.77]

In Equation 12.8 Be is the rotational constant, Be = h/(8jt2I), (I is the moment of inertia), coe is the vibrational frequency, 27T(oe = (k/ix)1, (k the vibrational force constant and x the reduced mass), re the equilibrium bond length (isotope independent to reasonable approximation), and ae is the vibration-rotation interaction constant... [Pg.396]


See other pages where Vibrational-rotational frequencies is mentioned: [Pg.177]    [Pg.117]    [Pg.331]    [Pg.177]    [Pg.117]    [Pg.331]    [Pg.1233]    [Pg.1243]    [Pg.428]    [Pg.60]    [Pg.363]    [Pg.140]    [Pg.398]    [Pg.318]    [Pg.205]    [Pg.65]    [Pg.806]    [Pg.92]    [Pg.246]    [Pg.100]    [Pg.199]    [Pg.673]    [Pg.163]    [Pg.291]    [Pg.219]    [Pg.74]    [Pg.231]    [Pg.247]    [Pg.75]    [Pg.159]    [Pg.254]    [Pg.255]   
See also in sourсe #XX -- [ Pg.177 , Pg.179 ]




SEARCH



Rotation frequency

Rotation-vibration

Rotational frequencies

Rotational vibrations

Rotational-vibrational

Vibrating rotator

Vibration frequency

Vibrational frequencies

Vibrational-rotational spectra, for frequency

Vibrational-rotational spectra, for frequency calibration

© 2024 chempedia.info