Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metalation enol ethers

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

Catalytic hydrogenation of the 14—15 double bond from the face opposite to the C18 substituent yields (196). Compound (196) contains the natural steroid stereochemistry around the D-ring. A metal-ammonia reduction of (196) forms the most stable product (197) thermodynamically. When R is equal to methyl, this process comprises an efficient total synthesis of estradiol methyl ester. Birch reduction of the A-ring of (197) followed by acid hydrolysis of the resultant enol ether allows access into the 19-norsteroids (198) (204). [Pg.437]

Hoffmaim-La Roche has produced -carotene since the 1950s and has rehed on core knowledge of vitamin A chemistry for the synthesis of this target. In this approach, a five-carbon homologation of vitamin A aldehyde (19) is accompHshed by successive acetalizations and enol ether condensations to prepare the aldehyde (46). Metal acetyUde coupling with two molecules of aldehyde (46) completes constmction of the C q carbon framework. Selective reduction of the internal triple bond of (47) is followed by dehydration and thermal isomerization to yield -carotene (21) (Fig. 10). [Pg.100]

The general reaction procedure and apparatus used are exactly as described in Procedure 2. Ammonia (465 ml) is distilled into a 2-liter reaction flask and to this is added 165mlofisopropylalcoholandasolutionof30g(0.195 mole) of 17/ -estradiol 3-methyl ether (mp 118.5-120°) in 180 ml of tetrahydrofuran. The steroid is only partially soluble in the mixture. A 5 g portion of sodium (26 g, 1.13 g-atoms total) is added to the stirred mixture and the solid dissolves in the light blue solution within several min. As additional metal is added, the mixture becomes dark blue and a solid (matted needles) separates. Stirring is inefficient for a few minutes until the mass of crystals breaks down. All of the sodium is consumed after 1 hr and 120 ml of methanol is then added to the mixture with care. The product is isolated as in Procedure 4h 2. After being air-dried, the solid weighs 32.5 g (ca. 100% for a monohydrate). A sample of the material is dried for analysis and analyzed as described in Procedure 2 enol ether, 91% unreduced aromatics, 0.3%. The crude product may be crystallized from acetone-water or preferably from hexane. [Pg.50]

Oppenauer oxidation of the enol ether (34) affords the corresponding 17 ketone (37) (the enol ether is stable to the basic oxidation conditions). This ketone affords the corresponding 17a-ethynyl compound on reaction with metal acetylides. Hydrolysis of the enol ether under mild conditions leads directly... [Pg.164]

Direct treatment of TIPS enol ethers of a variety of cyclic and acyclic ketones with the strong-base combination of n-BuLi/KO-t-Bu leads to /3-ketosilanes (2) after aqueous work-up. In contrast with the earlier method, this rearrangement appears to proceed through allylic, rather than vinylic, metallation, since enol ethers lacking an allylic a-proton are unreactive. [Pg.133]

Among the preformed enol derivatives used in this way have been enolates of magnesium, lithium, titanium, zirconium, and tin, ° silyl enol ethers, enol borinates,and enol borates, R CH=CR"—OB(OR)2. The nucleophilicity of silyl enol ethers has been examined. In general, metallic Z enolates give the syn (or erythro) pair, and this reaction is highly useful for the diastereoselective synthesis of these products. The ( ) isomers generally react nonstereoselectively. However, anti (or threo) stereoselectivity has been achieved in a number of cases, with titanium enolates, with magnesium enolates, with certain enol bor-inates, and with lithium enolates at — 78°C. ... [Pg.1221]

Reaction conditions that involve other enolate derivatives as nucleophiles have been developed, including boron enolates and enolates with titanium, tin, or zirconium as the metal. These systems are discussed in detail in the sections that follow, and in Section 2.1.2.5, we discuss reactions that involve covalent enolate equivalents, particularly silyl enol ethers. Scheme 2.1 illustrates some of the procedures that have been developed. A variety of carbon nucleophiles are represented in Scheme 2.1, including lithium and boron enolates, as well as titanium and tin derivatives, but in... [Pg.65]

Certain other metal ions also exhibit catalysis in aqueous solution. Two important criteria are rate of ligand exchange and the acidity of the metal hydrate. Metal hydrates that are too acidic lead to hydrolysis of the silyl enol ether, whereas slow exchange limits the ability of catalysis to compete with other processes. Indium(III) chloride is a borderline catalysts by these criteria, but nevertheless is effective. The optimum solvent is 95 5 isopropanol-water. Under these conditions, the reaction is syn selective, suggesting a cyclic TS.63... [Pg.84]

Whereas metal-catalyzed decomposition of simple diazoketones in the presence of ketene acetals yields dihydrofurans 121,124,134), cyclopropanes usually result from reaction with enol ethers, enol acetates and silyl enol ethers, just as with unactivated alkenes 13). l-Acyl-2-alkoxycyclopropanes were thus obtained by copper-catalyzed reactions between diazoacetone and enol ethers 79 105,135), enol acetates 79,135 and... [Pg.121]

Sc(OTf)3 is an effective catalyst in aldol reactions of silyl enol ethers with aldehydes.49 Compared with other typical rare-earth-metal (Y, Yb) trifiates, Sc(OTf)3 has the strongest activity in the reaction of 1-trimethylsiloxycyclohexane with benzaldehyde in dichloromethane. Although the reaction scarcely proceeded at —78°C in the presence of Y(OTf)3 or Yb(OTf)3, the aldol adduct was obtained in 81% yield in the presence of Sc(OTf)3 (Scheme 9). [Pg.403]

Adapted from Sasidharan and Kumar (257). Reaction conditions catalyst, 150 mg methyl trimethyl-silyl dimethylketene acetal (silyl enol ether), 10 mmol benzaldehyde, 10 mmol dry THF as dispersion medium, 10 mL temperature, 333 K reaction time, 18 h. Yield refers to the isolated product yield. Moles of product per mole of metal per hour. b The metal atom is substituted in the tetrahedral position. [Pg.138]

Judging from these findings, the mechanism of Lewis acid catalysis in water (for example, aldol reactions of aldehydes with silyl enol ethers) can be assumed to be as follows. When metal compounds are added to water, the metals dissodate and hydration occurs immediatdy. At this stage, the intramolecular and intermolecular exchange reactions of water molecules frequently occur. If an aldehyde exists in the system, there is a chance that it will coordinate to the metal cations instead of the water molecules and the aldehyde is then activated. A silyl enol ether attacks this adivated aldehyde to produce the aldol adduct. According to this mechanism, it is expected that many Lewis acid-catalyzed reactions should be successful in aqueous solutions. Although the precise activity as Lewis acids in aqueous media cannot be predicted quantitatively... [Pg.6]


See other pages where Metalation enol ethers is mentioned: [Pg.363]    [Pg.431]    [Pg.89]    [Pg.227]    [Pg.385]    [Pg.388]    [Pg.164]    [Pg.61]    [Pg.204]    [Pg.223]    [Pg.47]    [Pg.69]    [Pg.569]    [Pg.923]    [Pg.113]    [Pg.320]    [Pg.20]    [Pg.272]    [Pg.348]    [Pg.226]    [Pg.8]    [Pg.194]    [Pg.208]    [Pg.437]    [Pg.109]    [Pg.90]    [Pg.156]    [Pg.313]    [Pg.4]    [Pg.6]    [Pg.6]   
See also in sourсe #XX -- [ Pg.172 , Pg.184 , Pg.190 ]

See also in sourсe #XX -- [ Pg.554 ]




SEARCH



Alkali metal enolates silyl enol ethers

Enol ethers, metal enolate formation

Ethers metalation

Ethers metals

Metal enolate

Metal enolates

Metal enolates from enol ethers

Metal etherates

© 2024 chempedia.info