Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselectivity, with chiral boranes

As mentioned in Section 9.12.2.1.1, the boron-zinc exchange can be performed stereoselectively if diisopropyl-zinc instead of diethylzinc is used. For example, hydroboration of the chiral, racemic endocyclic olefin 134 with diethylzinc, followed by twofold transmetallation and electrophilic capture of the resulting copper intermediate with allyl bromide was used for the highly diastereoselective formation of the stereotriad in product 136 (Scheme 35).35,35a 103 QorreSp0nding enantioselective transformations were carried out with chiral boranes and catalytic amounts of copper salts (see Section 9.12.2.2.2).36... [Pg.519]

The hydride-donor class of reductants has not yet been successfully paired with enantioselective catalysts. However, a number of chiral reagents that are used in stoichiometric quantity can effect enantioselective reduction of acetophenone and other prochiral ketones. One class of reagents consists of derivatives of LiAlH4 in which some of die hydrides have been replaced by chiral ligands. Section C of Scheme 2.13 shows some examples where chiral diols or amino alcohols have been introduced. Another type of reagent represented in Scheme 2.13 is chiral trialkylborohydrides. Chiral boranes are quite readily available (see Section 4.9 in Part B) and easily converted to borohydrides. [Pg.110]

Results of the asymmetric 2-propenylborations of several chiral a- and /i-alkoxy aldehydes are presented in Table 11 74a-82 84. These data show that diisopinocampheyl(2-propenyl)borane A and l,3-bis(4-methylphenylsulfonyl)-4,5-diphenyl-2-propenyl-l,3,2-diazaborolidine C exhibit excellent diastereoselectivity in reactions with chiral aldehydes. These results are in complete agreement with the enantioselectivity of these reagents in reactions with achiral aldehydes (Section 1.3.3.3.3.1.4.). In contrast, however, the enantioselectivity of reactions of the tartrate 2-propenylboronate B (and to a lesser extent the tartrate (/i)-2-butenylhoronate)53b is highly... [Pg.302]

Enantioselective reduction is not possible for aldehydes, since the products are primary alcohols in which the reduced carbon is not chiral, but deuterated aldehydes RCDO give a chiral product, and these have been reduced enantioselectively with B-(3-pinanyl)-9-borabicyclo[3.3.1]nonane (Alpine-Borane) with almost complete optical purity. ... [Pg.1201]

New chiral oxazaborolidines that have been prepared from both enantiomers of optically active inexpensive a-pinene have also given quite good results in the asymmetric borane reduction of prochiral ketones.92 Borane and aromatic ketone coordinate to this structurally rigid oxazaborolidine (+)- or (—)-94, forming a six-membered cyclic chair-like transition state (Scheme 6-41). Following the mechanism shown in Scheme 6-37, intramolecular hydride transfer occurs to yield the product with high enantioselectivity. With aliphatic ketones, poor ee is normally obtained (see Table 6-9). [Pg.370]

Enantioselective borane reduction of prochiral ketones catalysed by chiral oxabor-olidines is of considerable synthetic utility, but the catalytic cycle has to compete with direct borane reduction of the ketone. Accordingly, precise kinetic data on the latter would help optimize conditions for the former. Such a study has been... [Pg.26]

Hydrogenation of 2,2,2-trifluoroacetophenone and its derivatives with a mixture of trans-RuCl2[(S)-xylbinap][(S)-daipen] and (CH3)3COK in 2-propanol gives the S alcohols quantitatively with a high optical purity (Scheme 1,64) [258]. Unlike with many chiral borane reagents [264], the sense of enantioface discrimination is the same as in hydrogenation of acetophenone. The electronic effects of 4 -substituents on the enantioselectivity are small. These chiral fluorinated alcohols are useful as components of new functionalized materials [265]. [Pg.57]

Researchers at Sepracor later disclosed the use of a new class of chiral oxazaborolidines derived from r/. v-aminoindanol in the enantioselective borane reduction of a-haloketones.6,7 The 5-hydrogen oxazaborolidine ligand 10 was prepared in situ from d,v-aminoindanol 1 and BH3 THF.8 Stock solutions of 5-methyl oxazaborolidine 11-16 were obtained by reaction of the corresponding N-alkyl aminoindanol with trimethyl boroxine.6,7 5-Methyl catalyst 11 was found to be more selective (94% ee at 0°C) than the 5-hydrogen catalyst 10 (89% ee at 0°C), and enantioselectivities with 11 increased at lower temperatures (96% ee at -20°C). The catalyst structure was modified by introduction of A-a I kyI substituents. As a general trend, reactivities and selectivities decreased as the steric bulk or the chelating ability of the A -alkyl substituent increased (Scheme 17.4). [Pg.323]

In 1981, Hirao and others reported that the chiral borane-amine complex 25a, derived from (S)-prolinol and 1 equivalent of BH3 THF, enantioselec-tively reduced propiophenone to afford (R )-l -phenyl-1 -propanol (26) in 44% ee9 (Scheme 4.3h). The chiral complex 25b was even better than 25a, affording the same secondary alcohol in 60% ee. Two years after the initial disclosure, Hirao et al. uncovered a new catalyst system that improved the previous experimental conditions dramatically10 (Scheme 4.3i). When the chiral aminoalcohol 27, prepared from (S)-valine methyl ester hydrochloride and phenylmagnesium bromide, was used along with 2 equivalents of BH3 THF, the enantioselectivity of the alcohol 26 jumped to 94% ee. In addition, the reaction time was shortened to 2 hours. [Pg.179]

The above mentioned polymer-supported oxazaborolidines are prepared from polymeric amino alcohols and borane. Another preparation of polymer-supported oxazaborolidines is based on the reaction of polymeric boronic acid with chiral amino alcohol. This type of polymer can be prepared only by chemical modification. Lithiation of the polymeric bromide then successive treatment with trimethyl borate and hydrochloric acid furnished polymer beads containing arylboronic acid residues 31. Treatment of this polymer with (li ,2S)-(-)-norephedrine and removal of the water produced gave the polymer-supported oxazaborolidine 32 (Eq. 14) [41 3]. If a,a-diphenyl-2-pyrrolidinemetha-nol was used instead of norephedrine the oxazaborolidine polymer 33 was obtained. The 2-vinylthiophene-styrene-divinylbenzene copolymer, 34, has been used as an alternative to the polystyrene support, because the thiophene moiety is easily lithiated with n-butyl-lithium and can be further functionalized. The oxazaborolidinone polymer 37 was then obtained as shown in Sch. 2. Enantioselectivities obtained by use of these polymeric oxazaborolidines were similar to those obtained by use of the low-molecular-weight counterpart in solution. For instance, acetophenone was reduced enantioselectively to 1-phe-nylethanol with 98 % ee in the presence of 0.6 equiv. polymer 33. Partial elimination of... [Pg.955]

Silyl enol ethers react with aldehydes in the presence of chiral boranes or other additives " to give aldols with good asymmetric induction (see the Mukaiyama aldol reaction in 16-35). Chiral boron enolates have been used. Since both new stereogenic centers are formed enantioselectively, this kind of process is called double asymmetric synthesis Where both the enolate derivative and substrate were achiral, carrying out the reaction in the presence of an optically active boron compound ° or a diamine coordinated with a tin compound ° gives the aldol product with excellent enantioselectivity for one stereoisomer. Formation of the magnesium enolate anion of a chiral amide, adds to aldehydes to give the alcohol enantioselectively. [Pg.1348]

Kiyooka et al. have reported that stoichiometric use of chiral oxazaborolidines (e.g. (S)-47), derived from sulfonamides of a-amino acids and borane, is highly effective in enantioselective aldol reactions of ketene TMS acetals such as 48 and 49 (Scheme 10.39) [117]. The use of TMS enolate 49 achieves highly enantioselective synthesis of dithiolane aldols, which can be readily converted into acetate aldols without epimerization. The chiral borane 47-promoted aldol reaction proceeds with high levels of reagent-control (Scheme 10.40) [118] - the absolute configuration of a newly formed stereogenic center depends on that of the promoter used and not that of the substrate. [Pg.435]

Masamune et al. examined the catalytic activity of several boron Lewis acids derived from BH3 THF and the p-toluenesulfonamides of simple a-amino acids towards the aldol reaction of benzaldehyde with TMS enolate 48 [121]. As a result, the borane catalysts derived from a,a-disubstituted glycine p-tolueriesulforiarriides were found to have high activity. The disubstitution would accelerate the second step (Step II) of the catalytic cycle (Scheme 10.43). On the basis of this observation, they developed chiral borane catalysts 47 c and 47 d, which enable highly enantioselective aldol reactions of KSA and thioketene silyl acetals (84—99% ee with 48). [Pg.437]

The catalytic enantioselective reduction of 1-ketophosphonates has recently been developed. This approach takes advantage of a development in the enantioselective reduction of prochiral ketones to chiral alcohols by means of catalytic amounts of oxazaborolidines with borane as reducing agent. Thus, the enantioselective reduction of 1-ketophosphonates is accomplished by treatment with different boranes, BH. THF (0.9 eq), BII3Me2S (0.66 eq),5 545 qj- catccholborane (1.1 eq)5° 5 6 in different solvent systems in the presence of a catalytic amount of freshly prepared B-n-butyloxazaborolidine, (5) or (R) (Scheme 7.93). The reaction is complete in about 5 h and produces the expected dialkyl 1-hydroxyalkylphosphonates in satisfactory yields (53-98%). [Pg.372]

By hydroboration of natural products such as a-pmene, H. C. Brown and coworkers have prepared mono- 2.15 (R = H) and diisopinocampheylboranes 2.16 (R = H). These reagents promote highly enantioselective hydroborations [580, 583], The two a-pinene enantiomers are available, so both enantiomers of these reagents can be used. The intermediate di- or trialkylboranes formed in these hydroborations are treated with MeCHO. This forms a chiral boronate 2.17, and the a-pinene is freed for recovery and recycling. From 2.17, it is possible to obtain many functionalized compounds. Additionally, new chiral boranes 2.18 are available, and these are precursors of many chiral compounds bearing the R group [169, 580, 583, 585-588] (Figure 2.2). [Pg.92]

Highly enantioselective aldol reactions of diethyl ketone have been recorded with the use of the chiral borane reagent (1). As shown in Scheme A, syn aldol products of 95-98% ee have been obtained upon reaction with various aldehydes with 94-98% diastereoselectivities. [Pg.264]

Indeed, by immobilization of optically active a- or )0-amino alcohols on cross-linked polystyrenes as in 6a-d, utilization of chiral borane complexes becomes feasible. These functionalized polymers were incorporated into simple columns and enantioselective reductions of aldehydes and ketones were performed. Thus, reduction of acetophenone with a borane complex prepared from 6d yielded optically active (-)-l-phenyl-2-propanol in high optical yield (>99% ee) [31]. In addition, the flow system also served for continuous regeneration of the immobilized complex. Injection of borane and valerophenone into the column, which was loaded with polymer 6a, was followed by collection of fractions every 30 min. The individual batches of collected 1-phenylpentanol were analyzed and the enantiomeric excess was determined to be 87,93, and 91% for three batches [32]. [Pg.221]


See other pages where Enantioselectivity, with chiral boranes is mentioned: [Pg.415]    [Pg.324]    [Pg.521]    [Pg.1222]    [Pg.117]    [Pg.117]    [Pg.342]    [Pg.619]    [Pg.134]    [Pg.509]    [Pg.68]    [Pg.385]    [Pg.733]    [Pg.14]    [Pg.171]    [Pg.647]    [Pg.13]    [Pg.319]    [Pg.125]    [Pg.214]    [Pg.389]    [Pg.926]    [Pg.293]    [Pg.194]    [Pg.82]    [Pg.647]    [Pg.209]    [Pg.509]   
See also in sourсe #XX -- [ Pg.1079 ]




SEARCH



Borane enantioselective

Borane, with

Chiral enantioselectivity

Chirally enantioselectivity

Enantioselectivity, with chiral

With boranes

© 2024 chempedia.info