Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Borane enantioselective

Ganesh, P Nichols, K. M. 1993. Reactions of cobalt-complexed acetylenic aldehydes with chiral (Y-alkoxyallyl)boranes Enantioselective synthesis of 3,4-dioxy 1,5-enynes. J. Org. Ghem. 58 5587-5588. [Pg.669]

Among chiral dialkylboranes, diisopinocampheylborane (8) is the most important and best-studied asymmetric hydroborating agent. It is obtained in both enantiomeric forms from naturally occurring a-pinene. Several procedures for its synthesis have been developed (151—153). The most convenient one, providing product of essentially 100% ee, involves the hydroboration of a-pinene with borane—dimethyl sulfide in tetrahydrofuran (154). Other chiral dialkylboranes derived from terpenes, eg, 2- and 3-carene (155), limonene (156), and longifolene (157,158), can also be prepared by controlled hydroboration. A more tedious approach to chiral dialkylboranes is based on the resolution of racemates. /n j -2,5-Dimethylborolane, which shows excellent enantioselectivity in the hydroboration of all principal classes of prochiral alkenes except 1,1-disubstituted terminal double bonds, has been... [Pg.311]

COREY Enalioselaclive borane reduction Enantioselective reduction ol ketones by borane or catecholborane catalyzed by oxazaborolldine 3... [Pg.77]

The most successful of the Lewis acid catalysts are oxazaborolidines prepared from chiral amino alcohols and boranes. These compounds lead to enantioselective reduction of acetophenone by an external reductant, usually diborane. The chiral environment established in the complex leads to facial selectivity. The most widely known example of these reagents is derived from the amino acid proline. Several other examples of this type of reagent have been developed, and these will be discussed more completely in Section 5.2 of part B. [Pg.110]

The hydride-donor class of reductants has not yet been successfully paired with enantioselective catalysts. However, a number of chiral reagents that are used in stoichiometric quantity can effect enantioselective reduction of acetophenone and other prochiral ketones. One class of reagents consists of derivatives of LiAlH4 in which some of die hydrides have been replaced by chiral ligands. Section C of Scheme 2.13 shows some examples where chiral diols or amino alcohols have been introduced. Another type of reagent represented in Scheme 2.13 is chiral trialkylborohydrides. Chiral boranes are quite readily available (see Section 4.9 in Part B) and easily converted to borohydrides. [Pg.110]

The oxazaborolidines are easily prepared by heating ephedrine with borane dimethyl sulfide or the appropriate boronate ester. The aluminum reagent C is obtained by mixing ephedrine and trimethylaluminum. Borolidinc A is superior to its methyl derivative B and to the aluminum analog C. The diastereomeric borolidine obtained from borane and (S,S)-pseu-doephedrine failed to show any cnantioselectivity25. A variety of aromatic aldehydes can be enantioselectively alkylated in the presence of A, however, with heptanal the enantioselectivity is poor25. [Pg.177]

The tartrate ester modified allylboronates, the diisopropyl 2-allyl-l,3,2-dioxaborolane-4,5-di-carboxylates, are attractive reagents for organic synthesis owing to their ease of preparation and stability to storage71. In the best cases these reagents are about as enantioselective as the allyl(diisopinocampheyl)boranes (82-88% ee with unhindered aliphatic aldehydes), but with hindered aliphatic, aromatic, a,/l-unsaturated and many a- and /5-alkoxy-substituted aldehydes the enantioselectivity falls to 55-75% ee71a-b... [Pg.291]

Results of the asymmetric 2-propenylborations of several chiral a- and /i-alkoxy aldehydes are presented in Table 11 74a-82 84. These data show that diisopinocampheyl(2-propenyl)borane A and l,3-bis(4-methylphenylsulfonyl)-4,5-diphenyl-2-propenyl-l,3,2-diazaborolidine C exhibit excellent diastereoselectivity in reactions with chiral aldehydes. These results are in complete agreement with the enantioselectivity of these reagents in reactions with achiral aldehydes (Section 1.3.3.3.3.1.4.). In contrast, however, the enantioselectivity of reactions of the tartrate 2-propenylboronate B (and to a lesser extent the tartrate (/i)-2-butenylhoronate)53b is highly... [Pg.302]

The (acyloxy)borane complex 9, readily available from tartaric acid derivative 8, also catalyzes aldol additions of silyl enol ethers34 and silylketene acetals3 5 in an enantioselective manner. Thus,. u -ketones 10 and /Thydroxy esters 12 are available34, as well as a-unsubstituted ketones 1135. [Pg.582]

When /V-arenesulfonyl-a-amino acid derived boranes 13 and 14 are used in substoichiometric amounts in order to mediate enantioselective aldol additions of a,a-dimethyl substituted ketcnc acetal 15, /J-hydroxycarboxylic esters 16 are obtained in enantiomeric excess of 84 to > 99 %3fi. [Pg.582]

The predominant formation of ann -carboxylic esters and thioesters results when the additives 13 or 14 are used to mediate aldol additions of silylketene acetals derived from propionates and propanethioates37. The enantioselective addition of a-unsubstituted esters or thioesters is also feasible with the borane 1437. [Pg.582]

Enantioselective reduction is not possible for aldehydes, since the products are primary alcohols in which the reduced carbon is not chiral, but deuterated aldehydes RCDO give a chiral product, and these have been reduced enantioselectively with B-(3-pinanyl)-9-borabicyclo[3.3.1]nonane (Alpine-Borane) with almost complete optical purity. ... [Pg.1201]

Alkyldimethylphosphine-boranes 74 underwent enantioselective deprotonation employing (-)-sparteine/s-BuLi, followed by oxidation with molecular oxygen [91, 92] in the presence of triethyl phosphite (Scheme 12) to afford moderate yields of enantiomerically enriched alkyl(hydroxymethyl)methylphosphine-bo-ranes 76, with 91-93% ee in the case of a bulky alkyl group and 75-81% ee in the case of cyclohexyl or phenyl groups [93]. Except for the adamantyl derivative (in which the ee increased to 99%), no major improvement in the ee was observed after recrystallization. [Pg.19]

We further synthesized unsymmetrical MiniPHOS derivatives 13b (Scheme 13) [30]. Thus, enantioselective deprotonation of l-adamantyl(dimethyl)phos-phine-borane (74, R = 1 -Ad), followed by treatment with ferf-butyldichlorophos-phine or 1-adamantyldichlorophosphine, methylmagnesium bromide and bo-rane-THF complex afforded the optically active diphosphine-boranes 82b as a mixture with the corresponding raeso-diastereomer. Enantiomerically pure unsymmetrical MiniPHOS-boranes 82b were obtained by column chromatography on silica gel or separation by recycling preparative HPLC. [Pg.21]

Bischirogenic unsymmetric (S,S)-BisP 6b (cf. (S,S)-BisP -borane 81b) were synthesized from the coupling reaction between synthon 79 and the lithiated (S)-alkylmethylphosphine-boranes 87 in reasonable to quantitative yields with enantioselectivity over 97% (Scheme 15) [94]. These phosphines constitute the unsymmetric version of BisP in that they bear different groups on both phosphorus atoms, breaking the C2-symmetry character of BisP [32,94]. [Pg.22]

As mentioned in Sect. 2.2, phosphine oxides are air-stable compounds, making their use in the field of asymmetric catalysis convenient. Moreover, they present electronic properties very different from the corresponding free phosphines and thus may be employed in different types of enantioselective reactions, m-Chloroperbenzoic acid (m-CPBA) has been showed to be a powerful reagent for the stereospecific oxidation of enantiomerically pure P-chirogenic phos-phine-boranes [98], affording R,R)-97 from Ad-BisP 6 (Scheme 18) [99]. The synthesis of R,R)-98 and (S,S)-99, which possess a f-Bu substituent, differs from the precedent in that deboranation precedes oxidation with hydrogen peroxide to yield the corresponding enantiomerically pure diphosphine oxides (Scheme 18) [99]. [Pg.25]

Enantioselective Br2 addition to cyclohexene (11) was accomplished by the solid-state reaction of a 2 1 inclusion complex of 10b and 11 with 7, although the optical yield was low (Sect. 2.1). However, some successful enantioselective solid-state reactions have been reported. For example, reaction of a 1 1 complex of 68 and acetophenone (64a) with borane-ethylenediamine complex (130) in the solid state gave the (i )-(+)-2-hydroxyethylbenzene (65a) of 44% ee in 96%... [Pg.29]

On the other hand, several examples of chiral sulfonamides derived from ehiral a-amino acids have been successfully employed as ligands for enantio-seleetive Diels-Alder reactions. Thus, Yamamoto and Takasu have easily prepared new chiral Lewis acids from borane and sulfonamides of various ehiral a-amino acids, which were further studied for their abilities to promote the enantioselective Diels-Alder reaction between methacrolein and 2,3-dime-thyl-1,3-butadiene. Since 2,4,6-triisopropylbenzenesulfonamide of a-amino-butyric acid gave the highest enantioseleetivity, this eatalyst was applied to the... [Pg.202]

In 1994, the scope of this p-hydroxy sulfoximine ligand was extended to the borane reduction of ketimine derivatives by these workers. The corresponding chiral amines were formed with enantioselectivities of up to 72% ee, as shown in Scheme 10.57. It was found that the A -substituent of the ketimine had a major influence on the asymmetric induction, with a ketoxime thioether (SPh) being the most successful substrate. [Pg.337]

Other S/N ligands have been investigated in the enantioselective catalytic reduction of ketones with borane. Thus, Mehler and Martens have reported the synthesis of sulfur-containing ligands based on the L-methionine skeleton and their subsequent application as new chiral catalysts for the borane reduction of ketones." The in situ formed chiral oxazaborolidine catalyst has been used in the reduction of aryl ketones, providing the corresponding alcohols in nearly quantitative yields and high enantioselectivities of up to 99% ee, as shown in Scheme 10.60. [Pg.338]

Variation in catalyst and ligand can lead to changes in both regio- and enantio-selectivity. For example, the hydroboration of vinyl arenes such as styrene and 6-methoxy-2-vinylnaphthalene can be directed to the internal secondary borane by use of Rh(COD)2BF4 as a catalyst.166 These reactions are enantioselective in the presence of a chiral phosphorus ligand. [Pg.341]


See other pages where Borane enantioselective is mentioned: [Pg.323]    [Pg.247]    [Pg.7]    [Pg.13]    [Pg.18]    [Pg.74]    [Pg.324]    [Pg.290]    [Pg.120]    [Pg.521]    [Pg.1015]    [Pg.1016]    [Pg.1222]    [Pg.13]    [Pg.20]    [Pg.53]    [Pg.214]    [Pg.288]    [Pg.300]    [Pg.336]    [Pg.336]    [Pg.337]    [Pg.338]    [Pg.339]    [Pg.342]    [Pg.415]    [Pg.791]   
See also in sourсe #XX -- [ Pg.528 ]




SEARCH



Alpine borane, enantioselective

Alpine borane, enantioselective reductions

Borane enantioselective allylation with

Borane hydration of alkenes enantioselective allylation with

Boranes, acyloxy, from enantioselectivity

COREY Enantioselective Borane Reduction

Enantioselective Borane Reduction of Ketone

Enantioselective borane reduction

Enantioselectivity, with Alpine borane

Enantioselectivity, with chiral boranes

© 2024 chempedia.info