Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselectivity substrate chemistry

Ke, T., Tidor, B., and Klibanov, A. M., Molecular-modeling calculations for enzymatic enantioselectivity taking hydration into account, Biotechnol. Bioeng., 57,741-745,1998. Haeffner, F., Norin, T., and Hull, K., Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions, Biophys. J., 74, 1251-1262, 1998. Bernstein, F. C., Koetzle, T. R, WiUiams, G. J. B., Meyer, E. F. J., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M., The protein data bank a computer-based archival file for macromolecular structures, J. Mol. Biol., 112, 535-542, 1977. Parida, S. and Dordick, J. S., Tailoring lipase specificity by solvent and substrate chemistries, J. Org. Chem., 58, 3238-3244, 1993. [Pg.213]

Nitrilases catalyze the synthetically important hydrolysis of nitriles with formation of the corresponding carboxylic acids [4]. Scientists at Diversa expanded the collection of nitrilases by metagenome panning [56]. Nevertheless, in numerous cases the usual limitations of enzyme catalysis become visible, including poor or only moderate enantioselectivity, limited activity (substrate acceptance), and/or product inhibition. Diversa also reported the first example of the directed evolution of an enantioselective nitrilase [20]. An additional limitation had to be overcome, which is sometimes ignored, when enzymes are used as catalysts in synthetic organic chemistry product inhibition and/or decreased enantioselectivity at high substrate concentrations [20]. [Pg.39]

In many cases, the racemization of a substrate required for DKR is difficult As an example, the production of optically pure cc-amino acids, which are used as intermediates for pharmaceuticals, cosmetics, and as chiral synfhons in organic chemistry [31], may be discussed. One of the important methods of the synthesis of amino acids is the hydrolysis of the appropriate hydantoins. Racemic 5-substituted hydantoins 15 are easily available from aldehydes using a commonly known synthetic procedure (Scheme 5.10) [32]. In the next step, they are enantioselectively hydrolyzed by d- or L-specific hydantoinase and the resulting N-carbamoyl amino acids 16 are hydrolyzed to optically pure a-amino acid 17 by other enzymes, namely, L- or D-specific carbamoylase. This process was introduced in the 1970s for the production of L-amino acids 17 [33]. For many substrates, the racemization process is too slow and in order to increase its rate enzymes called racemases are used. In processes the three enzymes, racemase, hydantoinase, and carbamoylase, can be used simultaneously this enables the production of a-amino acids without isolation of intermediates and increases the yield and productivity. Unfortunately, the commercial application of this process is limited because it is based on L-selective hydantoin-hydrolyzing enzymes [34, 35]. For production of D-amino acid the enzymes of opposite stereoselectivity are required. A recent study indicates that the inversion of enantioselectivity of hydantoinase, the key enzyme in the... [Pg.103]

In this work a new approach is desribed, which can help to understand ED over heterogeneous catalysts We also hope that this approach can be used to find new modifiers for enantioselective heterogeneous catalytic reactions. The basis for this approach is the steric shielding known in organic chemistry [7,8]. A chiral template molecule can induce shielding effect (SE) in such a way that it preferentially interacts with one of the prochiral sites of the substrate. If a substrate is preferentially shielded its further reaction can take place only fi"om its unshielded site resulting in ED. [Pg.241]

The ability of enzymes to achieve the selective esterification of one enantiomer of an alcohol over the other has been exploited by coupling this process with the in situ metal-catalysed racemisation of the unreactive enantiomer. Marr and co-workers have used the rhodium and iridium NHC complexes 44 and 45 to racemise the unreacted enantiomer of substrate 7 [17]. In combination with a lipase enzyme (Novozyme 435), excellent enantioselectivities were obtained in the acetylation of alcohol 7 to give the ester product 43 (Scheme 11.11). A related dynamic kinetic resolution has been reported by Corberdn and Peris [18]. hi their chemistry, the aldehyde 46 is readily racemised and the iridium NHC catalyst 35 catalyses the reversible reduction of aldehyde 46 to give an alcohol which is acylated by an enzyme to give the ester 47 in reasonable enantiomeric excess. [Pg.258]

Zhu, D., Yang, Y., Buynak, J.D. and Hua, L. (2006) Stereoselective ketone reduction by a carbonyl reductase from Sporobolomyces salmonicolor. Substrate specificity, enantioselectivity and enzyme—substrate docking studies. Organic and Biomolecular Chemistry, 4 (14), 2690-2695. [Pg.163]

Several classes of silyl ethers have been shown to be excellent substrates for the C-H insertion chemistry of donor/ acceptor-substituted carbenoids.81 Effective C-H insertions predominantly occur at methylene sites. Primary sites are not sufficiently activated electronically while tertiary sites are sterically too crowded. Rl -DOSP -catalyzed functionalization of the allyl silyl ether 3 resulted in a highly diastereoselective transformation, leading to the formation of the /3-hydroxyester 4 in 94% yield and 82% ee (Equation (17)).81 This example illustrates the regioselectivity of this chemistry, because 3 contains two allylic sites but only the methylene site adjacent to the siloxy group was functionalized. Even better substrates are the commercially available tetraalkoxysilanes such as 5, because with these substrates, the high diastereoselectivity was retained while the enantioselectivity was increased (Equation (18)).81... [Pg.173]

The chemistry described in this review article demonstrates the impressive positive influence that catalytic RCM has had on our research in connection to the development of other catalytic and enantioselective C-C bond forming reactions. There is no doubt that in the absence of pioneering work by Schrock and Grubbs, the Zr-catalyzed alkylation and kinetic resolution would be of less utility in synthesis. The number of unsaturated heterocyclic and carbocyclic substrates available for Zr-catalyzed asymmetric carbomagnesation would be far more limited without catalytic RCM. [Pg.138]

The current research areas with ruthenium chemistry include the effective asymmetric hydrogenation of other substrates such as imines and epoxides, the synthesis of more chemoselective and enantioselective catalysts, COz hydrogenation and utilization, new methods for recovering and recycling homogeneous catalysts, new solvent systems, catalysis in two or three phases, and the replace-... [Pg.49]

The development of catalytic asymmetric reactions is one of the major areas of research in the field of organic chemistry. So far, a number of chiral catalysts have been reported, and some of them have exhibited a much higher catalytic efficiency than enzymes, which are natural catalysts.111 Most of the synthetic asymmetric catalysts, however, show limited activity in terms of either enantioselectivity or chemical yields. The major difference between synthetic asymmetric catalysts and enzymes is that the former activate only one side of the substrate in an intermolecular reaction, whereas the latter can not only activate both sides of the substrate but can also control the orientation of the substrate. If this kind of synergistic cooperation can be realized in synthetic asymmetric catalysis, the concept will open up a new field in asymmetric synthesis, and a wide range of applications may well ensure. In this review we would like to discuss two types of asymmetric two-center catalysis promoted by complexes showing Lewis acidity and Bronsted basicity and/or Lewis acidity and Lewis basicity.121... [Pg.105]

Clark et al. (113) extended this chemistry to the propargylic oxidation of al-kynes. These substrates proved to be less reactive than the corresponding alkenes, and generally require an excess of the oxidant to achieve satisfactory yields, Eq. 97. Enantioselectivities are modest, at best. [Pg.60]

Due to the distance between the stereogenic center and the place of the nucleophilic attack, the enantioselective 1,5-substitution of chiral enyne acetates constitutes one of the rare cases of remote stereocontrol in organocopper chemistry. Moreover, the method is not limited to substrate 51, but can also be applied to the synthesis of enantiomerically enriched or pure vinylallenes 53-57 with variable substituent patterns (Scheme 2.20) [28]. [Pg.61]


See other pages where Enantioselectivity substrate chemistry is mentioned: [Pg.44]    [Pg.271]    [Pg.461]    [Pg.270]    [Pg.181]    [Pg.343]    [Pg.28]    [Pg.48]    [Pg.55]    [Pg.56]    [Pg.162]    [Pg.339]    [Pg.164]    [Pg.7]    [Pg.75]    [Pg.1]    [Pg.983]    [Pg.49]    [Pg.59]    [Pg.853]    [Pg.1318]    [Pg.195]    [Pg.16]    [Pg.148]    [Pg.421]    [Pg.344]    [Pg.128]    [Pg.134]    [Pg.147]    [Pg.33]    [Pg.279]    [Pg.134]    [Pg.44]    [Pg.2]    [Pg.31]    [Pg.61]    [Pg.395]    [Pg.395]   


SEARCH



Enantioselectivity substrate

© 2024 chempedia.info