Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantioselectivity of reactions

It has been observed, however, that the enantioselectivity of reactions of tartrate ester modified allylboronates with metal carbonyl complexes of unsaturated aldehydes are significantly improved compared with the results with the metal-free, uncomplexed aldehydes72. Two such examples involve the (benzaldehyde)tricarbonylchromium complex and the hexacarbonyl(2-... [Pg.292]

Results of the asymmetric 2-propenylborations of several chiral a- and /i-alkoxy aldehydes are presented in Table 11 74a-82 84. These data show that diisopinocampheyl(2-propenyl)borane A and l,3-bis(4-methylphenylsulfonyl)-4,5-diphenyl-2-propenyl-l,3,2-diazaborolidine C exhibit excellent diastereoselectivity in reactions with chiral aldehydes. These results are in complete agreement with the enantioselectivity of these reagents in reactions with achiral aldehydes (Section 1.3.3.3.3.1.4.). In contrast, however, the enantioselectivity of reactions of the tartrate 2-propenylboronate B (and to a lesser extent the tartrate (/i)-2-butenylhoronate)53b is highly... [Pg.302]

The synthesis of 10 features the SN2 displacement of the allylic acetate with migration of R2 from the ate complex6. Precursors 9 are prepared by the hydroboration of 3-acetoxy-l-alkynes that are available with very high enantiomeric purity via the asymmetric reduction of the corresponding l-alkyn-3-ones, and a substantial degree of asymmetric induction occurs in the conversion of 9 to 10. Best results, based on the enantioselectivity of reactions of 10 with aldehydes, are obtained when R2 is a bulky group such as isopinocampheyl (79 85 % ee)6. The yields of reactions of 10 with aldehydes are 62-76%. [Pg.314]

Both cis- and trans-chrysanthemic nitriles and amides were resolved into highly enantiopure amides and acids by Rhodococcus sp. whole cells [85]. The overall enantioselectivity of reactions of nitriles originated from the combined effects of a higher (lJ )-selective amidase and a (IJ )-selective nitrile hydratase (Figure 6.29). Chrysanthemic acids are related to constituents of pyrethrum flowers and insecticides. [Pg.145]

As with the corresponding allylboronate, the enantioselectivity of reactions with (3-alkoxy and conjugated aldehydes are lower (55-74% ee). In the case of benzaldehyde (91%, 66% ee), selectivity can be improved by the use of the derived chromium tricarbonyl complex. The homoallylic alcohol is obtained after... [Pg.235]

The enantioselectivities of reactions on chiral surfaces are of interest from a practical standpoint and are the result of enantiospecific differences in reaction energetics and reaction barriers. Another manifestation of the enantiospecific interaction between a chiral adsorbate and a chiral surface is adsorbate orientation. Enantiospecific orientations of chiral adsorbates on naturally chiral metal surfaces have been predicted by molecular simulation studies. The first studies using Monte Carlo methods to study chiral cycloalkanes adsorbed on chiral surfaces pre-... [Pg.88]

In the Rh catalyzed asymmetric hydrogenation of enamides, why can the mixed two different chiral monodentate phosphorus hgands improve the enantioselectivity of reaction in some cases ... [Pg.269]

Application of subcritical gaseous CO2 to an organic liquid causes the liquid phase to expand noticeably, due to extensive dissolution of the CO2 into the liquid phase (131). This expansion is accompanied by a reduction in the liquid phase viscosity, an increase in the solubility of H2 in the liquid, and an increase in the mass transfer rates from the gas to liquid phase. There is evidence that this can affect the enantioselectivity of reactions in viscous liquids. The enantioselectivity of asymmetric hydrogenation of unsaturated carboxylic acids in a viscous ionic liquid was shown to be strongly affected by CO2 expansion of the liquid, the enantioselectively being improved for one substrate (atropic acid) and decreased for another (tiglic acid). The results were explained in terms of the solubility and rate of transfer of H2 gas into the expanded ionic liquid (23). The same effect was not observed in expanded methanol. [Pg.482]

Studies of the catalytic activity of MOFs are in their infancy with some encouraging results emerging in enantioselective catalysis. By contrast, meso-porous solids have already been studied extensively as catalytic supports, particularly of complexes too large to be encapsulated in zeolites. One of the most significant developments in this area is the observation that the constrained encapsulation of chiral catalysts in mesopores can raise the enantioselectivities of reactions well above those observed when the reaction is performed homogeneously. [Pg.399]

On the other hand, the Vogt group reported the first enantioselective hydrovinylation of styrene using Co-based catalysts. Scheme 9.13 summarizes the representative results obtained by employing diverse chiral ligands. However, the highest enantioselectivity of reaction was only 50% ee. ... [Pg.398]

As noted in Chapter 14, the Curtin-Hanunett principle applies to this process, and high enantioselectivities are obtained under conditions when the two diastereomeric olefin complexes equilibrate faster than the addition of Because the relative rates for equilibration versus oxidative addition of Hj depend on the concentration of hydrogen, enantioselectivities often depend on the pressure of hydrogen. Enantioselectivities of reactions of MAC have been shown in some cases -to be higher at lower In addition,... [Pg.638]

By studying the ring opening of (rac)-2-phenyl-4-benzyl-5(4H)-oxazolone with butanol catalysed by CALB in organic media, it has been possible to correlate the protonation state of the enzyme with the enantioselectivity of the reaction [36]. The protonation state was controlled by the use of either organo-soluble bases or solid-state buffers of known pfC. Both triethylamine and the buffer pair CAPSO/CAPSO.Na [CAPSO = 3-(cyclohexylamino)-2-hydroxy-l-propanesulfonic acid] were found to increase the enantioselectivity of reactions catalysed by CALB and also the lipase from Mucor miehei. The effect of solvent, water activity and temperature on the enantioselectivity of reactions catalysed by lipases and hydroxynitrile lyases (enzymes that catalyse the addition of cyanide to aldehydes) has been reported [37]. [Pg.136]

The reaction between 2.4 and 2.5 yields four products two enantiomeric endo products and two enantiomeric exo products. In this section the effect of the solvent, the Lewis-acid and the substituents on the endo-exo selectivity are described. Chapter 3 will mainly focus on aspects dealing with the enantioselectivity of the reaction. [Pg.61]

When exclusively considering Lewis-add catalysis, the literature on ligand effects can be divided into studies describing quantitatively the effect of ligands on rates and equilibria of the individual steps in the catalytic cycle on one hand, and studies focused on the enantioselectivity of the reaction on the other. Interestingly, in the majority of the former investigations, aqueous media are employed. [Pg.75]

First, the pH-dependence of the enantioselectivity of the reaction between 3.8c and 3.9 catalysed by the copper(L-tryptophan) complex has been studied. Above pH 5 the enantioselectivity reaches a plateau value (Figure 3.3). The diminished enantioselectivities observed at lower pH most likely... [Pg.92]

Likewise, the influence of the ligand catalyst ratio has been investigated. Increase of this ratio up to 1.75 1 resulted in a slight improvement of the enantioselectivity of the copper(L-tryptophan)-catalysed Diels-Alder reaction. Interestingly, reducing the ligand catalyst ratio from 1 1 to 0.5 1 resulted in a drop of the enantiomeric excess from 25 to 18 % instead of the expected 12.5 %. Hence, as anticipated, ligand accelerated catalysis is operative. [Pg.93]

Finally the influence of the temperature and addition of ethanol on the enantioselectivity of the Diels-Alder reaction was studied. Table 3.3 summarises the results for different aqueous media. Apparently, changes in temperature as well as the presence of varying amounts of ethanol have only a modest influence on the selectivity of the Cu(tryptophan)-catalysed Diels-Alder reaction in aqueous solution. However, reaction times tend to increase significantly at lower temperatures. Also increasing the alcohol content induces an increase of the reaction times. [Pg.93]

In summary, when using a ligand catalyst ratio of 1.75 1 at pH 5-6 the enantioselectivity of the Diels-Alder reaction between 3.8c and 3.9 is dictated by the activated complexes involving ligand, copper(ir) ion, dienophile and diene. Considering that four different products are formed in this reaction (see Scheme 3.5), at least four different activated complexes are involved However, each of these complexes hus two degrees of freedom that determine the stereochemical outcome of the... [Pg.93]

Clearly, complete understanding of solvent effects on the enantioselectivity of Lewis-acid catalysed Diels-Alder reactions has to await future studies. For a more detailed mechanistic understanding of the origins of enantioselectivity, extension of the set of solvents as well as quantitative assessment of the strength of arene - arene interactions in these solvent will be of great help. [Pg.97]

Of all the work described in this thesis, this discovery is probably the most significant. Given the fact that the arene - arene interactions underlying the observed enantioselectivity of ftie Diels-Alder reactions described in Chapter 3 are also encountered in other organic reactions, we infer that, in the near future, the beneficial influence of water on enantioselectivity can also be extended to these transformations. Moreover, the fact that water can now be used as a solvent for enantioselective Lewis-add catalysed reactions facilitates mechanistic studies of these processes, because the number of equilibria that need to be considered is reduced Furthermore, knowledge and techniques from aqueous coordination chemistry can now be used directly in enantioselective catalysis. [Pg.162]

Throughout this thesis reference has been made to hydrophobic effects. Enforced hydrophobic interactions are an important contributor to the acceleration of uncatalysed and also of the Lewis-acid catalysed Diels-Alder reactions which are described in this thesis. Moreover, they are likely to be involved in the beneficial effect of water on the enantioselectivity of the Lewis-acid catalysed Diels-Alder reaction, as described in Chapter 3. Because arguments related to hydrophobic effects are spread over nearly all chapters, and ideas have developed simultaneously, we summarise our insights at the end of this thesis. [Pg.165]

Also the arene-arene interactions, as encountered in Chapter 3, are partly due to hydrophobic effects, which can be ranked among enforced hydrophobic interactions. Simultaneous coordination of an aromatic oc amino acid ligand and the dienophile to the central copper(II) ion offers the possibility of a reduction of the number of water molecules involved in hydrophobic hydration, leading to a strengthening of the arene-arene interaction. Hence, hydrophobic effects can have a beneficial influence on the enantioselectivity of organic reactions. This effect is anticipated to extend well beyond the Diels-Alder reaction. [Pg.169]

We have investigated the effect of solvents on the enantioselectivity. It turned out that water (74% ee) favours the enantioselectivity of the Cu (L-abrine) catalysed Diels-Alder reaction between Ic and 2 as compared to chloroform (44% ee), ethanol (39% ee), THF (24% ee) and acetonitrile (17% ee). The... [Pg.176]


See other pages where Enantioselectivity of reactions is mentioned: [Pg.263]    [Pg.4]    [Pg.24]    [Pg.260]    [Pg.802]    [Pg.231]    [Pg.192]    [Pg.436]    [Pg.1292]    [Pg.804]    [Pg.127]    [Pg.263]    [Pg.4]    [Pg.24]    [Pg.260]    [Pg.802]    [Pg.231]    [Pg.192]    [Pg.436]    [Pg.1292]    [Pg.804]    [Pg.127]    [Pg.32]    [Pg.75]    [Pg.75]    [Pg.86]    [Pg.91]    [Pg.93]    [Pg.95]    [Pg.97]    [Pg.100]    [Pg.101]    [Pg.162]    [Pg.162]    [Pg.177]    [Pg.323]    [Pg.178]   
See also in sourсe #XX -- [ Pg.411 ]




SEARCH



Copper-catalyzed Enantioselective Conjugate Addition Reactions of Organozinc Reagents

Enantioselective Acylation of Alcohol and Amine Reactions in Organic Synthesis

Enantioselective Conjugate Addition Reactions Proceeding via Other Types of Activation

Enantioselective Reactions of Carbenoids

Enantioselective Reactions of Unsymmetrical Allylic Esters Catalyzed by Molybdenum, Ruthenium, Rhodium, and Iridium

Enantioselective Synthesis of Quebrachamine through an Exceptionally Challenging RCM Reaction

Enantioselective reaction

Enantioselective reactions Cope rearrangement of 1,5-dienes

Enantioselective reactions addition of organozinc reagents to aldehydes

Enantioselective reactions alkylation of alkynes by organoboranes

Enantioselective reactions alkylation of hydrazones

Enantioselective reactions alkylation of oxazolines

Enantioselective reactions epoxidation of allylic alcohols

Enantioselective reactions in synthesis of longifolene

Enantioselectivity of the Carboligation Reaction

Further Application of Asymmetric Wittig-type Reactions in Enantioselective Synthesis

High- and Medium-Throughput Screening Systems for Assaying the Enantioselectivity of Enzymatic Reactions

Preparation of Heterogeneous Catalysts for Chemo- and Enantioselective Hydrogenation Reactions

Reaction Coordinates of Catalytic Enantioselective Reactions

Selected Applications of the Catalytic Enantioselective Allylation Reaction in Natural Product Synthesis

The topicity of enantioselective reactions

© 2024 chempedia.info