Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enantiomer properties

Name and Chemical Structure of one Enantiomer Properties vs. Absolute Configuration ... [Pg.6]

An example of a chiral compound is lactic acid. Two different forms of lactic acid that are mirror images of each other can be defined (Figure 2-69). These two different molecules are called enantiomers. They can be separated, isolated, and characterized experimentally. They are different chemical entities, and some of their properties arc different (c.g., their optical rotation),... [Pg.77]

In chemoinformatics, chirality is taken into account by many structural representation schemes, in order that a specific enantiomer can be imambiguously specified. A challenging task is the automatic detection of chirality in a molecular structure, which was solved for the case of chiral atoms, but not for chirality arising from other stereogenic units. Beyond labeling, quantitative descriptors of molecular chirahty are required for the prediction of chiral properties such as biological activity or enantioselectivity in chemical reactions) from the molecular structure. These descriptors, and how chemoinformatics can be used to automatically detect, specify, and represent molecular chirality, are described in more detail in Chapter 8. [Pg.78]

The Cahn-Ingold-Prelog (CIP) rules stand as the official way to specify chirahty of molecular structures [35, 36] (see also Section 2.8), but can we measure the chirality of a chiral molecule. Can one say that one structure is more chiral than another. These questions are associated in a chemist s mind with some of the experimentally observed properties of chiral compounds. For example, the racemic mixture of one pail of specific enantiomers may be more clearly separated in a given chiral chromatographic system than the racemic mixture of another compound. Or, the difference in pharmacological properties for a particular pair of enantiomers may be greater than for another pair. Or, one chiral compound may rotate the plane of polarized light more than another. Several theoretical quantitative measures of chirality have been developed and have been reviewed elsewhere [37-40]. [Pg.418]

In other approaches, chirahty descriptors were developed with the intention not of measuring chirality but of describing chirality in a way that correlations could be established with observable properties. These descriptors have different values for opposite enantiomers, in order that chirality-dependent properties can be predicted from them. They are usually multidimensional. [Pg.418]

Chirality codes are used to represent molecular chirality by a fixed number of de-.scriptors. Thc.se descriptors can then be correlated with molecular properties by way of statistical methods or artificial neural networks, for example. The importance of using descriptors that take different values for opposite enantiomers resides in the fact that observable properties are often different for opposite enantiomers. [Pg.420]

Specific rotation is a physical property of a substance just as melting point boil mg point density and solubility are For example the lactic acid obtained from milk is exclusively a single enantiomer We cite its specific rotation m the form [a]o =+3 8° The temperature m degrees Celsius and the wavelength of light at which the measure ment was made are indicated as superscripts and subscripts respectively... [Pg.288]

The usual physical properties such as density melting point and boiling point are iden tical for both enantiomers of a chiral compound... [Pg.295]

Enantiomers can have striking differences however m properties that depend on the arrangement of atoms m space Take for example the enantiomeric forms of carvone (R) (—) Carvone is the principal component of spearmint oil Its enantiomer (5) (+) carvone is the principal component of caraway seed oil The two enantiomers do not smell the same each has its own characteristic odor... [Pg.295]

An article entitled When Drug Molecules Look in the Mirror in the June 1996 is sue of the Journal of Chemi ca/fdc/cat/on (pp 481-484) describes numerous exam pies of common drugs in which the two enantiomers have different biological properties... [Pg.295]

Section 7 4 Optical activity, or the degree to which a substance rotates the plane of polarized light is a physical property used to characterize chiral sub stances Enantiomers have equal and opposite optical rotations To be optically active a substance must be chiral and one enantiomer must be present m excess of the other A racemic mixture is optically inactive and contains equal quantities of enantiomers... [Pg.316]

Section 7 8 Both enantiomers of the same substance are identical m most of then-physical properties The most prominent differences are biological ones such as taste and odor m which the substance interacts with a chiral receptor site m a living system Enantiomers also have important conse quences m medicine m which the two enantiomeric forms of a drug can have much different effects on a patient... [Pg.316]

Stereochemistry (Chapter 7) Chemistry in three dimensions the relationship of physical and chemical properties to the spatial arrangement of the atoms in a molecule Stereoelectron ic effect (Section 5 16) An electronic effect that depends on the spatial arrangement between the or bitals of the electron donor and acceptor Stereoisomers (Section 3 11) Isomers with the same constitu tion but that differ in respect to the arrangement of their atoms in space Stereoisomers may be either enantiomers or diastereomers... [Pg.1294]

Enantiomers. Two nonsuperimposable structures that are mirror images of each other are known as enantiomers. Enantiomers are related to each other in the same way that a right hand is related to a left hand. Except for the direction in which they rotate the plane of polarized light, enantiomers are identical in all physical properties. Enantiomers have identical chemical properties except in their reactivity toward optically active reagents. [Pg.46]

Multiple Chiral Centers. The number of stereoisomers increases rapidly with an increase in the number of chiral centers in a molecule. A molecule possessing two chiral atoms should have four optical isomers, that is, four structures consisting of two pairs of enantiomers. However, if a compound has two chiral centers but both centers have the same four substituents attached, the total number of isomers is three rather than four. One isomer of such a compound is not chiral because it is identical with its mirror image it has an internal mirror plane. This is an example of a diaster-eomer. The achiral structure is denoted as a meso compound. Diastereomers have different physical and chemical properties from the optically active enantiomers. Recognition of a plane of symmetry is usually the easiest way to detect a meso compound. The stereoisomers of tartaric acid are examples of compounds with multiple chiral centers (see Fig. 1.14), and one of its isomers is a meso compound. [Pg.47]

There are interesting examples of enantiomers that not only are found separately but also have different chemical properties when reacting with some reagent which is itself an enantiomer. For example (+ )-glucose is metabolized by animals and can be fermented by yeasts, but (—)-glucose has neither of these properties. The enantiomer ( + )-carvone smells of caraway whereas (—)-carvone smells of spearmint. [Pg.79]

Traditionally, chiral separations have been considered among the most difficult of all separations. Conventional separation techniques, such as distillation, Hquid—Hquid extraction, or even some forms of chromatography, are usually based on differences in analyte solubiUties or vapor pressures. However, in an achiral environment, enantiomers or optical isomers have identical physical and chemical properties. The general approach, then, is to create a "chiral environment" to achieve the desired chiral separation and requires chiral analyte—chiral selector interactions with more specificity than is obtainable with conventional techniques. [Pg.60]

Chemical Properties. Because of its chiral center, malic acid is optically active. In 1896, when tartaric acid was first reduced to malic acid, the levorotatory enantiomer, S(—), was confirmed as having the spatial configuration (1) (5,6). The other enantiomer (2) has the R configuration. A detailed discussion of configuration assignment by the sequence rule or the R and S system is available (7). [Pg.521]

Chemical Properties. The notation used by Chemical Abstracts to reflect the configuration of tartaric acid is as follows (R-R, R )-tartaric acid [S7-69A-] (4) (S-R, R )-tartaric acid [147-71-7] (5) and y j O-tartaric acid [147-73-9] (6). Racemic acid is an equimolar mixture of the two optically active enantiomers and, hence, like the meso acid, is optically inactive. [Pg.525]

Although most anesthetics are achiral or are adininistered as racemic mixture, the anesthetic actions are stereoselective. This property can define a specific, rather than a nonspecific, site of action. Stereoselectivity is observed for such barbiturates as thiopental, pentobarbital, and secobarbital. The (3)-enantiomer is modestly more potent (56,57). Additionally, the volatile anesthetic isoflurane also shows stereoselectivity. The (3)-enantiomer is the more active (58). Further evidence that proteins might serve as appropriate targets for general anesthetics come from observations that anesthetics inhibit the activity of the enzyme luciferase. The potencies parallel the anesthetic activities closely (59,60). [Pg.277]

When additional substituents ate bonded to other ahcycHc carbons, geometric isomers result. Table 2 fists primary (1°), secondary (2°), and tertiary (3°) amine derivatives of cyclohexane and includes CAS Registry Numbers for cis and trans isomers of the 2-, 3-, and 4-methylcyclohexylamines in addition to identification of the isomer mixtures usually sold commercially. For the 1,2- and 1,3-isomers, the racemic mixture of optical isomers is specified ultimate identification by CAS Registry Number is fisted for the (+) and (—) enantiomers of /n t-2-methylcyclohexylamine. The 1,4-isomer has a plane of symmetry and hence no chiral centers and no stereoisomers. The methylcyclohexylamine geometric isomers have different physical properties and are interconvertible by dehydrogenation—hydrogenation through the imine. [Pg.206]

In common with the naturally occurring carbapenem thienamycin (2), the introduction of the /n j -6-[l-(R)-hydroxyethyi] group had a profound effect on the biological properties of the penems. This, together with an indication from an early study (93) that, as with other P-lactams, the 5(R)-enantiomer was solely responsible for antibacterial activity, provided impetus for the development of methods for the synthesis of chiral penems. [Pg.10]

The first observation of the enantioselective properties of an albumin was made in 1958 (28) when it was discovered that the affinity for L-tryptophan exceeded that of the D-enantiomer by a factor of approximately 100. This led to more studies in 1973 of the separation of DL-tryptophan [54-12-6] C22H22N2O2, on BSA immobilized to Sepharose (29). After extensive investigation of the chromatographic behavior of numerous racemic compounds under different mobile-phase conditions, a BSA-SILICA hplc column (Resolvosil-R-BSA, Macherey-Nagel GmvH, Duren, Germany) was... [Pg.99]


See other pages where Enantiomer properties is mentioned: [Pg.429]    [Pg.429]    [Pg.429]    [Pg.429]    [Pg.132]    [Pg.659]    [Pg.1714]    [Pg.77]    [Pg.419]    [Pg.77]    [Pg.295]    [Pg.295]    [Pg.296]    [Pg.311]    [Pg.61]    [Pg.187]    [Pg.534]    [Pg.440]    [Pg.299]    [Pg.237]    [Pg.239]    [Pg.241]    [Pg.247]    [Pg.249]    [Pg.259]    [Pg.272]    [Pg.96]    [Pg.99]   
See also in sourсe #XX -- [ Pg.95 ]

See also in sourсe #XX -- [ Pg.16 ]

See also in sourсe #XX -- [ Pg.228 ]

See also in sourсe #XX -- [ Pg.123 , Pg.127 ]

See also in sourсe #XX -- [ Pg.206 ]

See also in sourсe #XX -- [ Pg.710 ]

See also in sourсe #XX -- [ Pg.201 ]

See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Chemical Properties of Enantiomers

Enantiomers basic properties

Enantiomers biological properties

Enantiomers pharmacological properties

Enantiomers physical properties

Enantiomers) chemical properties

Enantiomers, asymmetric synthesis physical properties

Pharmacokinetic properties enantiomers

Physical properties of enantiomers

Properties of Enantiomers

Properties of Enantiomers Chemical Differences

Properties of Enantiomers Optical Activity

Properties of Enantiomers Physical Differences

© 2024 chempedia.info