Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enamines acids

Deoxyribose dRib AFAcetyl-2-deoxy-neur-2-enaminic acid Neu2en5Ac... [Pg.160]

Some enamine carbanions have been used as reagents for generating carbon-carbon bonds46, as well as in a-47 and / -48 metallation processes. However, the lack of quantitative data for enamine acidity precludes rationalization. [Pg.712]

A-Acetyl-2-deoxyneur-2-enaminic acid Neu2en5Ac A-Acetylgalactosamine GalNAc... [Pg.1362]

Keto acids are obtained by acylation of cyclopentanone enamines (see p. I3f.) with acid chlorides and subsequent base-catalyzed mro-aldol cleavage (S. Hdnig, 1960). [Pg.88]

Alkyl groups attached to aromatic rings are oxidized more readily than the ring in alkaline media. Complete oxidation to benzoic acids usually occurs with nonspecific oxidants such as KMnO, but activated tertiary carbon atoms can be oxidized to the corresponding alcohols (R. Stewart, 1965 D. Arndt, 1975). With mercury(ll) acetate, allyiic and benzylic oxidations are aJso possible. It is most widely used in the mild dehydrogenation of tertiary amines to give, enamines or heteroarenes (M. Shamma, 1970 H. Arzoumanian. 1971 A. Friedrich, 1975). [Pg.120]

The scheme below shows how the eastern and western parts of a corrin chromo-phore can be combined regioselectively. The western part has a more acidic enamine than the eastern part, whereas the imidic ester of the eastern part is more electrophilic. [Pg.260]

Primary and secondary amines also react with epoxides (or in situ produced episulfides )r aziridines)to /J-hydroxyamines (or /J-mercaptoamines or 1,2-diamines). The Michael type iddition of amines to activated C—C double bonds is also a useful synthetic reaction. Rnally unines react readily with. carbonyl compounds to form imines and enamines and with carbo-tylic acid chlorides or esters to give amides which can be reduced to amines with LiAlH (p. Ilf.). All these reactions are often applied in synthesis to produce polycyclic alkaloids with itrogen bridgeheads (J.W. Huffman, 1967) G. Stork, 1963 S.S. Klioze, 1975). [Pg.291]

Finally a general approach to synthesize A -pyrrolines must be mentioned. This is tl acid-catalyzed (NH4CI or catalytic amounts of HBr) and thermally (150°C) induced tea rangement of cyclopropyl imines. These educts may be obtained from commercial cyan> acetate, cyclopropyl cyanide, or benzyl cyanide derivatives by the routes outlined below. Tl rearrangement is reminiscent of the rearrangement of 1-silyloxy-l-vinylcyclopropancs (p. 7 83) but since it is acid-catalyzed it occurs at much lower temperatures. A -Pyrrolines constitut reactive enamines and may be used in further addition reactions such as the Robinson anei lation with methyl vinyl ketone (R.V. Stevens, 1967, 1968, 1971). [Pg.298]

Two synthetic bridged nitrogen heterocycles are also prepared on a commercial scale. The pentazocine synthesis consists of a reductive alkylation of a pyridinium ring, a remarkable and puzzling addition to the most hindered position, hydrogenation of an enamine, and acid-catalyzed substitution of a phenol derivative. The synthesis is an application of the reactivity rules discussed in the alkaloid section. The same applies for clidinium bromide. [Pg.309]

Typical nucleophiles known to react with coordinated alkenes are water, alcohols, carboxylic acids, ammonia, amines, enamines, and active methylene compounds 11.12]. The intramolecular version is particularly useful for syntheses of various heterocyclic compounds[l 3,14]. CO and aromatics also react with alkenes. The oxidation reactions of alkenes can be classified further based on these attacking species. Under certain conditions, especially in the presence of bases, the rr-alkene complex 4 is converted into the 7r-allylic complex 5. Various stoichiometric reactions of alkenes via 7r-allylic complex 5 are treated in Section 4. [Pg.21]

One route to o-nitrobenzyl ketones is by acylation of carbon nucleophiles by o-nitrophenylacetyl chloride. This reaction has been applied to such nucleophiles as diethyl malonatc[l], methyl acetoacetate[2], Meldrum s acid[3] and enamines[4]. The procedure given below for ethyl indole-2-acetate is a good example of this methodology. Acylation of u-nitrobenzyl anions, as illustrated by the reaction with diethyl oxalate in the classic Reissert procedure for preparing indolc-2-carboxylate esters[5], is another route to o-nitrobenzyl ketones. The o-nitrophenyl enamines generated in the first step of the Leimgruber-Batcho synthesis (see Section 2.1) are also potential substrates for C-acylation[6,7], Deformylation and reduction leads to 2-sub-stituted indoles. [Pg.14]

If the condensation is done with /S-aminocrotonic ester or (2-aminopent-2-en-4-one)enamine, intermediates 245b are also obtained then they are cyclized either to 2--aininothiazoles (243b) under the influence of alkalis or to A-4-thiazol-2-ones by acids (Scheme 125b) (728). [Pg.298]

Reaction conditions depend on the reactants and usually involve acid or base catalysis. Examples of X include sulfate, acid sulfate, alkane- or arenesulfonate, chloride, bromide, hydroxyl, alkoxide, perchlorate, etc. RX can also be an alkyl orthoformate or alkyl carboxylate. The reaction of cycHc alkylating agents, eg, epoxides and a2iridines, with sodium or potassium salts of alkyl hydroperoxides also promotes formation of dialkyl peroxides (44,66). Olefinic alkylating agents include acycHc and cycHc olefinic hydrocarbons, vinyl and isopropenyl ethers, enamines, A[-vinylamides, vinyl sulfonates, divinyl sulfone, and a, P-unsaturated compounds, eg, methyl acrylate, mesityl oxide, acrylamide, and acrylonitrile (44,66). [Pg.109]

Another synthesis of Lyral (51) consists of the reaction of myrcene with acrolein to give the myrac aldehyde [37677-14-8] (52). The aldehyde group, which is sensitive to acid hydration conditions with strong acids, has to be protected by formation of the morpholine enamine. The enamine is then hydrolyzed on workup after the acid-catalyzed hydration to produce Lyral (93—95). [Pg.417]

Reaction with vatious nucleophilic reagents provides several types of dyes. Those with simple chromophores include the hernicyanine iodide [16384-23-9] (20) in which one of the terminal nitrogens is nonheterocyclic enamine triearbocyanine iodide [16384-24-0] (21) useful as a laser dye and the merocyanine [32634-47-2] (22). More complex polynuclear dyes from reagents with more than one reactive site include the trinuclear BAB (Basic-Acidic-Basic) dye [66037-42-1] (23) containing basic-acidic-basic heterocycles. Indolizinium quaternary salts (24), derived from reaction of diphenylcyclopropenone [886-38-4] and 4-picoline [108-89-4] provide trimethine dyes such as (25), which absorb near 950 nm in the infrared (23). [Pg.395]

Cycloadditions of diazaquinones with unsaturated compounds yield diazacyc-lobutanes, from which N-substituted 3-hydroxypyridazin-6(l/f)-ones are formed after addition of water, t-butanol or acetic acid (Scheme 56). The same types of compound are also obtained from enamines. [Pg.39]

A final method for the preparation of pyrido[2,3-carboxylic acid chlorides with enamines in the presence of base to give 6,7,8-trisubstituted 5-ones (253 254)... [Pg.229]

A/ -Methoxycarbonyl-2-pyrroline undergoes Vilsmeier formylation and Friedel-Crafts acylation in the 3-position (82TL1201). In an attempt to prepare a chloropyrroline by chlorination of 2-pyrrolidone, the product (234) was obtained in 62% yield (8UOC4076). At pH 7, two molecules of 2,3-dihydropyrrole add together to give (235), thus exemplifying the dual characteristics of 2,3-dihydropyrroles as imines and enamines. The ability of pyrrolines to react with nucleophiles is central to their biosynthetic role. For example, addition of acetoacetic acid (possibly as its coenzyme A ester) to pyrroline is a key step in the biosynthesis of the alkaloid hygrine (236). [Pg.86]


See other pages where Enamines acids is mentioned: [Pg.351]    [Pg.689]    [Pg.654]    [Pg.1148]    [Pg.1133]    [Pg.1185]    [Pg.658]    [Pg.56]    [Pg.1082]    [Pg.1218]    [Pg.1300]    [Pg.1358]    [Pg.1128]    [Pg.351]    [Pg.689]    [Pg.654]    [Pg.1148]    [Pg.1133]    [Pg.1185]    [Pg.658]    [Pg.56]    [Pg.1082]    [Pg.1218]    [Pg.1300]    [Pg.1358]    [Pg.1128]    [Pg.157]    [Pg.56]    [Pg.99]    [Pg.100]    [Pg.101]    [Pg.133]    [Pg.312]    [Pg.438]    [Pg.67]    [Pg.43]    [Pg.247]    [Pg.142]   
See also in sourсe #XX -- [ Pg.41 ]




SEARCH



Acetylenedicarboxylic acid reaction with enamines, cyclobutene ring

Acid chlorides reaction with enamines

Combination of Enamine Catalysis and Lewis Acids in SN1-Type Reactions

Enamine addition, Lewis acids

Enamines (s. a. Aminomethylene carboxylic acid amides

Enamines acid-catalyzed

Enamines ketocarboxylic acid

Enamines, a-chlororeaction with carboxylic acids

Enamines, reaction with formic acid

Formic acid enamines

From Enamines and Mercaptocarboxylic Acids

Iminium-enamine-acid catalysis

Quinolinic acid enamine

Sulphuric acids, reactions with enamines

© 2024 chempedia.info