Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enamine addition, Lewis acids

Enamine and Lewis-acid-catalyzed Michael additions provide a useful complement to the enolate Michael addition. These variants allow for the reaction to be carried out under nearly neutral or formally acidic conditions. In terms of the stereochemistry, the enolate Michael addition appears at this point to be more versatile in that both stereoisomers are often obtainable from a given set of substrates. However, in particular cases, the enamine or the... [Pg.164]

Mechanistically, enamine and Lewis-acid-mediated conjugate additions are complex. The opportunity exists for the product-determining step to occur at a number of points and, without further study, the precise nature of the manifold is not entirely clear. In some enamine cases where the stereoselectivity likely results from the conjugate addition, a synclinal type transition state seems to be involved. With the Mukaiyama-Michael addition, some processes implicate an open-extended pathway. Despite the mechanistic uncertainties that remain, sufficient data are now available so that the stereochemistry in many cases can be anticipated by extrapolation. [Pg.165]

Asymmetric conjugate addition of aldehydes to acrylate esters has been achieved through catalysis by a bifunctional enamine-metal Lewis acid and by an axially chiral amino diol. " ... [Pg.25]

A unique method to generate the pyridine ring employed a transition metal-mediated 6-endo-dig cyclization of A-propargylamine derivative 120. The reaction proceeds in 5-12 h with yields of 22-74%. Gold (HI) salts are required to catalyze the reaction, but copper salts are sufficient with reactive ketones. A proposed reaction mechanism involves activation of the alkyne by transition metal complexation. This lowers the activation energy for the enamine addition to the alkyne that generates 121. The transition metal also behaves as a Lewis acid and facilitates formation of 120 from 118 and 119. Subsequent aromatization of 121 affords pyridine 122. [Pg.319]

Aldol reactions occur in many biological pathways, but are particularly important in carbohydrate metabolism, where enzymes called aldolases catalyze the addition of a ketone enolate ion to an aldehvde. Aldolases occur in all organisms and are of two types. Type 1 aldolases occur primarily in animals and higher plants type II aldolases occur primarily in fungi and bacteria. Both types catalyze the same kind of reaction, but type 1 aldolases operate place through an enamine, while type II aldolases require a metal ion (usually 7n2+) as Lewis acid and operate through an enolate ion. [Pg.901]

Similar additions may be performed with the enamine 13. However, with 3-buten-2-one or methyl 2-propenoate Lewis acid catalysis is needed to activate the Michael acceptor chloro-trimethylsilane proved to be best suited for this purpose. A remarkable solvent effect is seen in these reactions. A change from THF to HMPA/toluene (1 1) results in a reversal of the absolute configuration of the product 14, presumably due to a ligand effect of HMPA235. [Pg.985]

A high degree of syn selectivity can be obtained from the addition of enamines to nitroalkenes. In this case, the syn selectivity is largely independent of the geometry of the acceptor, as well as the donor, double bond. Next in terms of selectivity, are the addition of enolates. However, whether one obtains syn or anti selectivity is dependent on both the geometry of the acceptor and the enolate double bond, whereas anti selectivity of a modest and unreliable level is obtained by reaction of enol silyl ethers with nitroalkenes under Lewis acid catalysis. [Pg.1011]

Snider and coworkers125 have reported the Lewis acid catalyzed [2 + 2]cycloaddition of (phenylsulfonyl)allene 112. The reaction with methylenecyclohexane in dichloro-methane gives a 25% yield of an 8 1 mixture of 210 and 211 (equation 132). An addition reaction of l-(p-tolylsulfonyl)ethylene with enamines gives aminocyanobutanes via the zwitterionic intermediate (212) as shown in equation 133126. [Pg.807]

Research on enamine formation in micro reactors was focused on eliminating the need for using Lewis acid catalysts [11]. In addition, operation under mild conditions such as room-temperature processing was favored. [Pg.526]

The powerful nucleophilicity of enamines allows the addition of nitroalkenes to take place without the presence of Lewis acids. The isolation of secondary products, which can be explained by an initial Michael addition, suggests the participation of zwitterionic intermediates in the mechanism of the reaction (Eq. 8.97).154... [Pg.276]

In addition, acid cocatalysts can assist the formation of the enamine. With very basic, nucleophilic amines, such as pyrrolidine and its derivatives, acid catalysis is not necessarily required for enamine formation. However, with less basic amines, Brpnsted or Lewis acids are often used to assist in enamine formation (Scheme 7). [Pg.37]

The best alternatives to enamines for conjugate addition of aldehyde, ketone, and acid derivative enols are silyl enol ethers, Their formation and some uses were discussed in Chapters 21 and 26-28, but these stable neutral nueleophiles also react very well with Michael acceptors either spontaneously or with Lewis acid catalysis at low temperature,... [Pg.755]

Hydroxyindoles may be accessed using the Nenitzescu reaction, as illustrated by preparation of the indole 381 from the enamine 382 and 1,4-benzoquinone (Equation 107) <1996JOC9055>. Additional applications of this strategy encompass syntheses of 1 -alkyl-5 -hydroxynaltrindole derivatives <2005JME635>, and lO-hydroxy-5,6-dihydroindolo[2,l- ]isoquinolines <2001JOC4457>. An alternative approach to 5-hydroxyindole derivatives involves Lewis acid-mediated reactions of benzoquinone monoimines with enol ethers <1997TL6135>. [Pg.315]

Aziridine formation fix>m arylnitrenes, rather than via triazolines, is known for highly fluorinated arenes. Phenyl azide with trifluoroacetic acid generates a nitrenium ion which adds stereospecifically to alkenes to give aziridines. Yields are rather low, partly due to concurrent ring opening of the aziridine by addition of trifluoroacetic acid. Similar reactions can be achieved with Lewis acids such as AlCb Enamines with aryl azides can yield either 2-aminoaziridines or amidines. ... [Pg.476]

Michael addition of metal enolates to a,/3-unsaturated carbonyls has been intensively studied in recent years and provides an established method in organic synthesis for the preparation of a wide range of 1,5-dicarbonyl compounds (128) under neutral and mild conditions . Metal enolates derived from ketones or esters typically act as Michael donors, and a,-unsaturated carbonyls including enoates, enones and unsaturated amides are used as Michael acceptors. However, reaction between a ketone enolate (125) and an a,/3-unsaturated ester (126) to form an ester enolate (127, equation 37) is not the thermodynamically preferred one, because ester enolates are generally more labile than ketone enolates. Thus, this transformation does not proceed well under thermal or catalytic conditions more than equimolar amounts of additives (mainly Lewis acids, such as TiCU) are generally required to enable satisfactory conversion, as shown in Table 8. Various groups have developed synthons as unsaturated ester equivalents (ortho esters , thioesters ) and /3-lithiated enamines as ketone enolate equivalents to afford a conjugate addition with acceptable yields. [Pg.380]

This is a mild, simple and practical procedure for 1,4-addition of an aldehyde to methyl vinyl ketone, without converting the aldehyde into an enamine or a silyl enol ether. The products, substituted 5-ketoaldehydes, are important compounds, especially for the preparation of substituted 2-cyclohexen-1-one derivatives, which have been versatile starting materials for syntheses of natural products such as terpenoids. These 5-ketoaldehydes have been prepared previously by the 1,4-addition of modified aldehydes, i.e., morpholinoenamines of aldehydes,trimethylsilyl enol ethers of aldehydes in the presence of a Lewis acid, or diethylallylamine in the presence of a catalytic amount of a Ru complex, to methyl vinyl ketones. [Pg.92]

If you want to do a conjugate addition of a carbonyl compound without having a second anion-stabilizing group, you need some stable and relatively unreactive enol equivalent. In Chapters 27 and 28 you saw how enamines are useful in alkylation reactions. These neutral species are also perfect for conjugate addition as they are soft nucleophiles but are more reactive than ends and can be prepared quantitatively in advance. The reactivity of enamines is such that heating the reactants together, sometimes neat, is all that is required. Protic or Lewis acid catalysis can also be used to catalyse the reaction at lower temperature. [Pg.754]


See other pages where Enamine addition, Lewis acids is mentioned: [Pg.20]    [Pg.113]    [Pg.31]    [Pg.207]    [Pg.175]    [Pg.177]    [Pg.441]    [Pg.194]    [Pg.523]    [Pg.183]    [Pg.65]    [Pg.560]    [Pg.7]    [Pg.348]    [Pg.297]    [Pg.754]    [Pg.111]    [Pg.473]    [Pg.625]    [Pg.92]    [Pg.743]    [Pg.675]    [Pg.705]    [Pg.743]    [Pg.426]    [Pg.345]    [Pg.149]    [Pg.166]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Enamines acids

Lewis acid addition

Lewis additive

© 2024 chempedia.info