Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion-polymerised

Tetrafluoroethylene. Emulsion polymerisation of tetrafluoroethylene, catalysed by oxygen, yields polytetrafluoroethylene (Tejlon) as a very tough horn-hke material of high melting point. It possesses excellent electrical insulation properties and a remarkable inertness towards all chemical reagents, including aqua regia. [Pg.1015]

Emulsion polymerisation of a mixture of butadiene and styrene gives a synthetic rubber (Buna S GBS rubber), which is used either alone or blended with natural rubber for automobile tyres and a variety of other articles. [Pg.1016]

Fig. 2. Emulsion polymerisation plant. A, Emulsion feed tank B, polymerisation reactor C, dmmming tank E, filter M, meter P, pressure gauge T,... Fig. 2. Emulsion polymerisation plant. A, Emulsion feed tank B, polymerisation reactor C, dmmming tank E, filter M, meter P, pressure gauge T,...
Emulsion Polymerisation of Acylie Monomers, CM-104, Rohm and Haas Co., Philadelphia, Pa. [Pg.173]

D. C. Blackley, Emulsion Polymerisation—Theory and Practice, John Wiley Sons, Inc., New York, 1975, Chapt. 6. [Pg.233]

A third source of initiator for emulsion polymerisation is hydroxyl radicals created by y-radiation of water. A review of radiation-induced emulsion polymerisation detailed efforts to use y-radiation to produce styrene, acrylonitrile, methyl methacrylate, and other similar polymers (60). The economics of y-radiation processes are claimed to compare favorably with conventional techniques although worldwide iadustrial appHcation of y-radiation processes has yet to occur. Use of y-radiation has been made for laboratory study because radical generation can be turned on and off quickly and at various rates (61). [Pg.26]

The ionic nature of the radicals generated, by whatever technique, can contribute to the stabilisation of latex particles. Soapless emulsion polymerisations can be carried out usiag potassium persulfate as initiator (62). It is often important to control pH with buffets dutiag soapless emulsion p olymerisation. [Pg.26]

Cha.in-Tra.nsferAgents. The most commonly employed chain-transfer agents ia emulsion polymerisation are mercaptans, disulfides, carbon tetrabromide, and carbon tetrachloride. They are added to control the molecular weight of a polymer, by transferring a propagating radical to the chain transfer agent AX (63) ... [Pg.26]

The newly formed short-chain radical A then quickly reacts with a monomer molecule to create a primary radical. If subsequent initiation is not fast, AX is considered an inhibitor. Many have studied the influence of chain-transfer reactions on emulsion polymerisation because of the interesting complexities arising from enhanced radical desorption rates from the growing polymer particles (64,65). Chain-transfer reactions are not limited to chain-transfer agents. Chain-transfer to monomer is ia many cases the main chain termination event ia emulsion polymerisation. Chain transfer to polymer leads to branching which can greatiy impact final product properties (66). [Pg.26]

M. S. El-Aasser and co-workers, ia M. S. El-Aasser and. W. Vanderhoff, eds.. Emulsion Polymerisation of VinylA.cetate AppHed Science PubHshers, London, 1981, p. 215. [Pg.30]

The principal use of the peroxodisulfate salts is as initiators (qv) for olefin polymerisation in aqueous systems, particularly for the manufacture of polyacrylonitrile and its copolymers (see Acrylonitrile polymers). These salts are used in the emulsion polymerisation of vinyl chloride, styrene—butadiene, vinyl acetate, neoprene, and acryhc esters (see Acrylic ester polymers Styrene Vinyl polymers). [Pg.96]

D. R. Basset and A. E. Hamielec, eds.. Emulsion Polymers and Emulsion Polymerisation, ACS Symposium Series 165, American Chemical Society, Washington, D.C., 1981. [Pg.438]

F. Bovey and co-workers. Emulsion Polymerisation, Vol. 10, High Polymers, Interscience PubHshers, New York, 1955. [Pg.262]

In the late 1920s Bayer Company began reevaluating the emulsion polymerisation process of polybutadiene as an improvement over their Buna technology, which was based on sodium as a catalyst. Incorporation of styrene (qv) as a comonomer produced a superior polymer compared to polybutadiene. The product Buna S was the precursor of the single largest-volume polymer produced in the 1990s, emulsion styrene—butadiene mbber... [Pg.493]

Emulsion Polymerization. Emulsion SBR was commercialised and produced in quantity while the theory of the mechanism was being debated. Harkins was among the earliest researchers to describe the mechanism (16) others were Mark (17) and Elory (18). The theory of emulsion polymerisation kinetics by Smith and Ewart is still vaUd, for the most part, within the framework of monomers of limited solubiUty (19). There is general agreement in the modem theory of emulsion polymerisation that the process proceeds in three distinct phases, as elucidated by Harkins (20) nucleation (initiation), growth (propagation), and completion (termination). [Pg.495]

D. C. Blackley, Emulsion Polymerisation Theory and Practice, Applied Science Publishers Ltd., London, 1975, pp. 58—72. [Pg.501]

Chain transfer to monomer and to other small molecules leads to lower molecular weight products, but when polymerisation occurs ia the relative absence of monomer and other transfer agents, such as solvents, chain transfer to polymer becomes more important. As a result, toward the end of batch-suspension or batch-emulsion polymerisation reactions, branched polymer chains tend to form. In suspension and emulsion processes where monomer is fed continuously, the products tend to be more branched than when polymerisations are carried out ia the presence of a plentiful supply of monomer. [Pg.466]

I. Piirma, ed.. Emulsion Polymerisation, Academic Press, New York, 1982. [Pg.472]

D. C. BEddey, Emulsion Polymerisation Theoy andPractice,JohnWHey 8cSons,Inc.,NewYoik,1975. [Pg.472]

R. K. Greene, Continuous Emulsion Polymerisation of Vinyl Acetate, Ph.D. dissertation, 1976. [Pg.472]

R. G. Gilbert, Emulsion Polymerisation. A Mechanistic Approach, Academic Press, Inc., New York, 1995. [Pg.472]

Polymerization System. This elastomer is prepared by emulsion polymerisation, similar to that used for SBR, but generally carried out to virtually 100% conversion. As for SBR, the chain irregularity leads to a noncrystallising mbber, so that this polymer requires carbon black reinforcement for strength. [Pg.470]

Acrylate esters can be polymerised in a variety of ways. Among these is ionic polymerisation, which although possible (6—9), has not found industrial apphcation, and practically all commercial acryUc elastomers are produced by free-radical polymerisation. Of the four methods available, ie, bulk, solution, suspension, and emulsion polymerisation, only aqueous suspension and emulsion polymerisation are used to produce the ACMs present in the market. Bulk polymerisation of acrylate monomers is hasardous because it does not allow efficient heat exchange, requited by the extremely exothermic reaction. [Pg.474]

Vmulsifier Type. The manufacturers of NBR use a variety of emulsifiers (most commonly anionic) for the emulsion polymerisation of nitrile mbber. When the latex is coagulated and dried, some of the emulsifier and coagulant remains with the mbber and affects the properties attained with the mbber compound. Water resistance is one property ia particular that is dependent on the type and amount of residual emulsifier. Residual emulsifer also affects the cure properties and mold fouling characteristics of the mbber. [Pg.522]

Free-Radical Polymerization. The best method for polymerising isoprene by a free-radical process is emulsion polymerisation. Using potassium persulfate [7727-21-1] as initiator at 50°C, a 75% conversion to polyisoprene in 15 h was obtained (76). A typical emulsion polymerisation recipe is given as follows (77). [Pg.5]

The predominant microstmcture obtained by emulsion polymerisation is trans-ly determined by ir, as shown in mol % for two temperatures and initiators (72). [Pg.5]

The reaction is considerably modified if the so-called emulsion polymerisation technique is used. In this process the reaction mixture contains about 5% soap and a water-soluble initiator system. The monomer, water, initiator, soap and other ingredients are stirred in the reaction vessel. The monomer forms into droplets which are emulsified by some of the soap molecules. Excess soap aggregates into micelles, of about 100 molecules, in which the polar ends of the soap molecules are turned outwards towards the water whilst the non-polar hydrocarbon ends are turned inwards (Figure 2.17). [Pg.28]

The final polymerised product is formed in particles much smaller (50-500 nm) than produced with suspension polymerisation. Emulsion polymerisation can lead to rapid production of high molecular weight polymers but the unavoidable occlusion of large quantities of soap adversely affects the electrical insulation properties and the clarity of the polymer. [Pg.28]

In the case of emulsion polymerisation, half the micelles will be reacting at any one time. The conversion rate is thus virtually independent of radical concentration (within limits) but dependent on the number of micelles (or swollen polymer particles). [Pg.33]

An increase in the rate of radical production in emulsion polymerisation will reduce the molecular weight since it will increase the frequency of termination. An increase in the number of particles will, however, reduce the rate of entry of radicals into a specific micelle and increase molecular weight. Thus at constant initiator concentration and temperature an increase in micelles (in effect in soap concentration) will lead to an increase in molecular weight and in rate of conversion. [Pg.33]

Polybutadiene was first prepared in the early years of the 20th century by such methods as sodium-catalysed polymerisation of butadiene. However, the polymers produced by these methods and also by the later free-radical emulsion polymerisation techniques did not possess the properties which made them desirable rubbers. With the development of the Ziegler-Natta catalyst systems in the 1950s, it was possible to produce polymers with a controlled stereo regularity, some of which had useful properties as elastomers. [Pg.290]

The butadiene-acrylonitrile rubbers were first prepared about 1930 about five years after the initial development of free-radical-initiated emulsion polymerisation. Commercial production commenced in Germany in 1937, with the product being known as Buna N. By the late 1980s there were about 350 grades marketed by some 20 producers and by the early 1990s world production was of the order of 250000 tonnes per annum, thus classifying it as a major special purpose rubber. [Pg.294]

Figure 12.7. Typical polymerisation vessel suitable for suspension or emulsion polymerisation of... Figure 12.7. Typical polymerisation vessel suitable for suspension or emulsion polymerisation of...
In the early days of the commercial development of PVC, emulsion polymers were preferred for general purpose applications. This was because these materials exist in the form of the fine primary particles of diameter of the order of 0.1-1.0 p,m, which in the case of some commercial grades aggregate into hollow secondary particles or cenospheres with diameters of 30-100 p,m. These emulsion polymer particles have a high surface/volume ratio and fluxing and gelation with plasticisers is rapid. The use of such polymers was, however, restricted because of the presence of large quantities of soaps and other additives necessary to emulsion polymerisation which adversely affect clarity and electrical insulation properties. [Pg.321]

Poly(vinyl chloride) is commercially available in the form of aqueous colloidal dispersions (latices). They are the uncoagulated products of emulsion polymerisation process and are used to coat or impregnate textiles and paper. The individual particles are somewhat less than 1 p,m in diameter. The latex may be coagulated by concentrated acids, polyvalent cations and by dehydration with water-miscible liquids. [Pg.355]


See other pages where Emulsion-polymerised is mentioned: [Pg.169]    [Pg.199]    [Pg.29]    [Pg.29]    [Pg.438]    [Pg.466]    [Pg.520]    [Pg.28]    [Pg.292]    [Pg.293]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Polymerisation emulsion

© 2024 chempedia.info