Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsion distributions

Consider now a bidisperse emulsion, distributed uniformly in a layer between parallel horizontal planes z = 0 and z = H at the initial moment. The vertical z-axis is directed parallel to gravity. The initial volume concentrations of drops are small (Wio 1 and W20 1), so the hindered character of sedimentation can be neglected. After a certain time, all large drops of kind 1 will settle. We can select a column of a unit cross section in the emulsion volume and ask how many small drops will remain inside this column. A similar problem is of interest in laboratory studies on how the electric field affects the emulsion sedimentation rate. [Pg.417]

Figure 9 Photomicrograph of water in bitumen emulsion distribution with interfacial layer shown as the dark ring around the white droplet. Figure 9 Photomicrograph of water in bitumen emulsion distribution with interfacial layer shown as the dark ring around the white droplet.
Emulsion A has a droplet size distribution that obeys the ordinary Gaussian error curve. The most probable droplet size is 5 iim. Make a plot of p/p(max), where p(max) is the maximum probability, versus size if the width at p/p(max) = j corresponds to... [Pg.526]

As an example figure B 1.14.13 shows the droplet size distribution of oil drops in the cream layer of a decane-in-water emulsion as determined by PFG [45]. Each curve represents the distribution at a different height in the cream with large drops at the top of the cream. The inset shows the PFG echo decay trains as a fiinction of... [Pg.1541]

Figure Bl.14.13. Derivation of the droplet size distribution in a cream layer of a decane/water emulsion from PGSE data. The inset shows the signal attenuation as a fiinction of the gradient strength for diflfiision weighting recorded at each position (top trace = bottom of cream). A Stokes-based velocity model (solid lines) was fitted to the experimental data (solid circles). The curious horizontal trace in the centre of the plot is due to partial volume filling at the water/cream interface. The droplet size distribution of the emulsion was calculated as a fiinction of height from these NMR data. The most intense narrowest distribution occurs at the base of the cream and the curves proceed logically up tlirough the cream in steps of 0.041 cm. It is concluded from these data that the biggest droplets are found at the top and the smallest at the bottom of tlie cream. Figure Bl.14.13. Derivation of the droplet size distribution in a cream layer of a decane/water emulsion from PGSE data. The inset shows the signal attenuation as a fiinction of the gradient strength for diflfiision weighting recorded at each position (top trace = bottom of cream). A Stokes-based velocity model (solid lines) was fitted to the experimental data (solid circles). The curious horizontal trace in the centre of the plot is due to partial volume filling at the water/cream interface. The droplet size distribution of the emulsion was calculated as a fiinction of height from these NMR data. The most intense narrowest distribution occurs at the base of the cream and the curves proceed logically up tlirough the cream in steps of 0.041 cm. It is concluded from these data that the biggest droplets are found at the top and the smallest at the bottom of tlie cream.
MoDonald P J, Ciampi E, Keddie J L, Fleidenreioh M and Kimmioh R, Magnetio resonanoe determination of the spatial dependenoe of the droplet size distribution in the oream layer of oil-in-water emulsions evidenoe for the effeots of depletion floooulation Rhys. Rev. E, submitted... [Pg.1546]

The surfactant is initially distributed through three different locations dissolved as individual molecules or ions in the aqueous phase, at the surface of the monomer drops, and as micelles. The latter category holds most of the surfactant. Likewise, the monomer is located in three places. Some monomer is present as individual molecules dissolved in the water. Some monomer diffuses into the oily interior of the micelle, where its concentration is much greater than in the aqueous phase. This process is called solubilization. The third site of monomer is in the dispersed droplets themselves. Most of the monomer is located in the latter, since these drops are much larger, although far less abundant, than the micelles. Figure 6.10 is a schematic illustration of this state of affairs during emulsion polymerization. [Pg.399]

Figure 6.10 Schematic representation of the distribution of surfactant in an emulsion polymerization. Note the relative sizes of suspended particles. [From J. W. Vanderhoff, E. B. Bradford, H. L. Tarkowski, J. B. Shaffer, and R. M. Wiley,Chem. 34 32(1962).]... Figure 6.10 Schematic representation of the distribution of surfactant in an emulsion polymerization. Note the relative sizes of suspended particles. [From J. W. Vanderhoff, E. B. Bradford, H. L. Tarkowski, J. B. Shaffer, and R. M. Wiley,Chem. 34 32(1962).]...
Before polyacrylamides are sold, the amount of residual acrylamide is determined. In one method, the monomer is extracted from the polymer and the acrylamide content is determined by hplc (153). A second method is based on analysis by cationic exchange chromatography (154). For dry products the particle si2e distribution can be quickly determined by use of a shaker and a series of test sieves. Batches with small particles can present a dust ha2ard. The percentage of insoluble material is determined in both dry and emulsion products. [Pg.144]

Monomer compositional drifts may also occur due to preferential solution of the styrene in the mbber phase or solution of the acrylonitrile in the aqueous phase (72). In emulsion systems, mbber particle size may also influence graft stmcture so that the number of graft chains per unit of mbber particle surface area tends to remain constant (73). Factors affecting the distribution (eg, core-sheU vs "wart-like" morphologies) of the grafted copolymer on the mbber particle surface have been studied in emulsion systems (74). Effects due to preferential solvation of the initiator by the polybutadiene have been described (75,76). [Pg.203]

Rosin sizing usually involves the addition of dilute aqueous solutions or dispersions of rosin soap size and alum to a pulp slurry (44—46). Although beater addition of either coreactant is permissable, addition of both before final pulp refining is unwise because subsequently exposed ceUulose surfaces may not be properly sized. The size and alum should be added sufficiendy eady to provide uniform distribution in the slurry, and adequate time for the formation and retention of aluminum resinates, commonly referred to as size precipitate. Free rosin emulsion sizes, however, do not react to a significant degree with alum in the pulp slurry, and addition of a cationic starch or resin is recommended to maximize retention of size to fiber. Subsequent reaction with aluminum occurs principally in the machine drier sections (47). [Pg.18]

Analysis of a method of maximizing the usefiilness of smaH pilot units in achieving similitude is described in Reference 67. The pilot unit should be designed to produce fully developed large bubbles or slugs as rapidly as possible above the inlet. UsuaHy, the basic reaction conditions of feed composition, temperature, pressure, and catalyst activity are kept constant. Constant catalyst activity usuaHy requires use of the same particle size distribution and therefore constant minimum fluidization velocity which is usuaHy much less than the superficial gas velocity. Mass transport from the bubble by diffusion may be less than by convective exchange between the bubble and the surrounding emulsion phase. [Pg.518]

Eree-radical initiation of emulsion copolymers produces a random polymerisation in which the trans/cis ratio caimot be controlled. The nature of ESBR free-radical polymerisation results in the polymer being heterogeneous, with a broad molecular weight distribution and random copolymer composition. The microstmcture is not amenable to manipulation, although the temperature of the polymerisation affects the ratio of trans to cis somewhat. [Pg.495]

Copolymers with butadiene, ie, those containing at least 60 wt % butadiene, are an important family of mbbers. In addition to synthetic mbber, these compositions have extensive uses as paper coatings, water-based paints, and carpet backing. Because of unfavorable reaction kinetics in a mass system, these copolymers are made in an emulsion polymerization system, which favors chain propagation but not termination (199). The result is economically acceptable rates with desirable chain lengths. Usually such processes are mn batchwise in order to achieve satisfactory particle size distribution. [Pg.520]

Many different combinations of surfactant and protective coUoid are used in emulsion polymerizations of vinyl acetate as stabilizers. The properties of the emulsion and the polymeric film depend to a large extent on the identity and quantity of the stabilizers. The choice of stabilizer affects the mean and distribution of particle size which affects the rheology and film formation. The stabilizer system also impacts the stabiUty of the emulsion to mechanical shear, temperature change, and compounding. Characteristics of the coalesced resin affected by the stabilizer include tack, smoothness, opacity, water resistance, and film strength (41,42). [Pg.464]

Continuous emulsion copolymerization processes for vinyl acetate and vinyl acetate—ethylene copolymer have been reported (59—64). CycHc variations in the number of particles, conversion, and particle-size distribution have been studied. Control of these variations based on on-line measurements and the use of preformed latex seed particles has been discussed (61,62). [Pg.464]

Growth in PVAc consumption is illustrated in Eigure 3. The emulsions continue to dominate the adhesives and paint markets. It also shows the distribution of PVAc and copolymer usage by market. The companies Hsted in Table 10 are among the principal suppHers of poly(vinyl acetate)s and vinyl acetate copolymers, but there are numerous other suppHers. Many other companies produce these polymers and consume them internally in the formulation of products. [Pg.467]

Specific advancements ia the chemical synthesis of coUoidal materials are noteworthy. Many types of genera ting devices have been used to produce coUoidal Hquid aerosols (qv) and emulsions (qv) (39—43) among them are atomizers and nebulizers of various designs (30,44—50). A unique feature of produciag Hquid or soHd coUoids via aerosol processes (Table 3) is that material with a relatively narrow size distribution can be routinely prepared. These monosized coUoids are often produced by relying on an electrostatic classifier to select desired particle sizes ia the final stage of aerosol production. [Pg.395]


See other pages where Emulsion distributions is mentioned: [Pg.1340]    [Pg.26]    [Pg.1340]    [Pg.26]    [Pg.502]    [Pg.503]    [Pg.527]    [Pg.171]    [Pg.278]    [Pg.279]    [Pg.418]    [Pg.187]    [Pg.451]    [Pg.239]    [Pg.269]    [Pg.270]    [Pg.430]    [Pg.540]    [Pg.19]    [Pg.192]    [Pg.443]    [Pg.452]    [Pg.460]    [Pg.420]    [Pg.411]    [Pg.313]    [Pg.463]    [Pg.465]    [Pg.466]    [Pg.466]    [Pg.471]    [Pg.411]    [Pg.470]   
See also in sourсe #XX -- [ Pg.105 , Pg.106 , Pg.107 , Pg.108 , Pg.109 , Pg.110 , Pg.111 , Pg.112 , Pg.113 , Pg.114 , Pg.115 , Pg.116 , Pg.117 , Pg.118 ]

See also in sourсe #XX -- [ Pg.311 , Pg.312 ]




SEARCH



Droplet velocity distribution emulsion

Emulsion distribution ratio

Emulsion droplet size distributions

Emulsion particle size distribution

Emulsion polymerization molecular weight distribution

Emulsion polymerization particle size distribution

Emulsion systems, particle size distributions, study

Emulsions preservative distribution

Monomer sequence distribution, emulsion

Monomer sequence distribution, emulsion copolymers

Parenteral emulsions droplet size distributions

Particle size distribution emulsions, effect

Particle size distribution in emulsion polymerization

Particle size distribution multiple emulsions

Pharmaceutical emulsions droplet size distributions

© 2024 chempedia.info