Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emission of zinc

The most important phosphors are sulphides and oxides of transition metals. The sulphides of zinc and of cadmium are the most important materials of the sulphide type. An important condition of achieving a highly efficient phosphor is to prepare a salt of the highest possible chemical purity. The emission of zinc sulphide can be shifted to longer wavelengths by increasingly replacing the zinc ions with cadmium. [Pg.477]

Figure 5. The brilliant blue-violet emission of (A), and the green emission of zinc silicate activated by Mn (B). Figure 5. The brilliant blue-violet emission of (A), and the green emission of zinc silicate activated by Mn (B).
Jo, S. H., Banerjee, D., and Ren, Z. F. (2004). Field emission of zinc oxide nanowires grown on carbon cloth. Appl. Phys. Lett. 85 1407-1409. [Pg.386]

Fishbein 1981). Zinc is found in the atmosphere at the highest concentrations in the smallest particles (Fishbein 1981). Atmospheric emissions of zinc, consisting primarily of zinc sorbed to submicron particulate matter in the form of zinc oxide, are expected to dissipate quickly as a result of deposition to soil and surface waters (ERA 1980d). [Pg.123]

The composition of the furnace dust primarily depends on the steel grade being produced. For instance, low alloy steels will not generate emissions containing chromium or nickel, whereas stainless steel will. Another important factor is scrap quality. Melting galvanised steel scrap leads to significant emissions of zinc oxide. [Pg.104]

The level of natural versus man-made emissions to the environment are of a similar magnitude. SoH erosion is the major contributor of natural emissions with zinc mining, zinc production facHities, iron and steel production, corrosion of galvanized stmctures, coal and fuel combustion, waste disposal and incineration, and the use of zinc fertilizers and pesticides being the principal anthropogenic contributors. [Pg.410]

Particulate emissions from zinc processing are collected in baghouses or ESPs. SO2 in high concentrations is passed directly to an acid plant for production of sulfuric acid by the contact process. Low-concentration SO2 streams are scrubbed with an aqueous ammonia solution. The resulting ammonium sulfate is processed to the crystalline form and marketed as fertilizer. [Pg.504]

The potential of LA-based techniques for depth profiling of coated and multilayer samples have been exemplified in recent publications. The depth profiling of the zinc-coated steels by LIBS has been demonstrated [4.242]. An XeCl excimer laser with 28 ns pulse duration and variable pulse energy was used for ablation. The emission of the laser plume was monitored by use of a Czerny-Turner grating spectrometer with a CCD two-dimensional detector. The dependence of the intensities of the Zn and Fe lines on the number of laser shots applied to the same spot was measured and the depth profile of Zn coating was constructed by using the estimated ablation rate per laser shot. To obtain the true Zn-Fe profile the measured intensities of both analytes were normalized to the sum of the line intensities. The LIBS profile thus obtained correlated very well with the GD-OES profile of the same sample. Both profiles are shown in Fig. 4.40. The ablation rate of approximately 8 nm shot ... [Pg.235]

Air emissions for processes with few controls may be of the order of 30 kilograms lead or zinc per metric ton (kg/t) of lead or zinc produced. The presence of metals in vapor form is dependent on temperature. Leaching processes will generate acid vapors, while refining processes result in products of incomplete combustion (PICs). Emissions of arsine, chlorine, and hydrogen chloride vapors and acid mists are associated with electrorefining. [Pg.132]

Ga( Zn) and Cu( Zn) Mossbauer emission spectroscopy on bulk GaP, GaAs and GaSb semiconductors point at isolated zinc metal centers at Ga sites. The observed center shift to higher positive velocities at the transition from p- to n-type samples corresponds to the recharging of zinc impurity centers... [Pg.269]

Experimental results clearly demonstrate that catalytic reaction of dehydration of alcohols on zinc oxide proceeds via formation of radicals. Emission of hydrogen atoms from the catalyzer surface may be associated with structure relaxation of the catalyzer surface excited during the reaction [26]. [Pg.237]

We heated the substrate of zinc oxide containing 10 cm 2 of silver atoms (in this case there was already no emission after completion of deposition) at 300 C. Such thermal treatment results in formation of microcrystals, rather than evaporation adatoms on the surface of the substrate made of zinc oxide. In paper [34] it was shown that microcrystals with diameter 100 A deposited on the zinc oxide surface are acceptors of electrons, therefore the formation of microcrystals results in increase of resistivity of a sensor substrate above the initial value (prior to silver deposition). In this case the initial value of the resistance of sensor-substrate was 2.1 MOhm, after adsorption of silver atoms it became 700 kOhm, and as a result of heating at 300°C and formation of microcrystals - acceptors of electrons it in increased up to 12 MOhm. If such a substrate is subject to deposition of 3-10 5 cjjj-2 silver again, then emission of silver atoms gets detected. From the change of resistivity of sensor-detector due to deposition of silver atoms one can conclude that in this case the emission of atoms is 4 times as low than in experiment with pure substrate made of zinc oxide, which confirms the supposition made on the mechanism of emission of adatoms. [Pg.366]

This conclusion is in agreement with experiments in which a smootb quartz and cellulose were used as substrates. For above materials the transfer of excitation energy of the dye into the substrate is low which is confirmed by intensive luminescence of adsorbed tripaflavine. Note, that the activation energy of emission of singlet oxygen is close for zinc oxide oxidized by oxygen atoms, quartz and cellulose and amounts to 5-10 kcal/mol [83]. [Pg.390]

Blue luminescence of zinc complexes of pyridyl-containing complexes is an area of current interest.277 Design of blue luminescent materials is of relevance to display applications, as blue-light-emitting diodes, and to this end Che examined solution luminescence of zinc pyridylamine complexes.73,278 Che and co-workers studied the complex Zn40(7-azaindoyl)6 which has a blue emission at 433 nm in the solid state.279,280 In an attempt to improve on stability Wang et al. examined compounds with neutral 7-azaindole and an A-functionalized pyridyl derivative.281 In contrast with other metal complexes of the neutral 7-azaindole (32), Zn(7-azaindole)2(OAc)2 is a blue luminescent compound and a A-(2-pyridyl) 2-azaindole (33) and its complexes were also... [Pg.1167]

The performance of aluminium hydroxide/magnesium hydroxide-filled systems can be enhanced by incorporation of zinc hydroxystannate in halogen-free rubbers giving reduced smoke and toxic gas emission, coupled with higher flame retardancy. This action will be complimentary to the water release and endothermic effects of aluminium hydroxide/magnesium hydroxide filler systems. [Pg.150]

Some of the investigations carried out in the first half of the twentieth century were related to CL associated with thermal decomposition of aromatic cyclic peroxides [75, 76] and the extremely low-level ultraviolet emission produced in different reaction systems such as neutralization and redox reactions involving oxidants (permanganate, halogens, and chromic acid in combination with oxalates, glucose, or bisulfite) [77], In this period some papers appeared in which the bright luminescence emitted when alkali metals were exposed to oxygen was reported. The phenomenon was described for derivatives of zinc [78], boron [79], and sodium, potassium, and aluminum [80]. [Pg.16]

Heavy metals. For instance, in 2005, the total load of zinc in the Dommel was 21,580 kg, whereas the load of cadmium was about 525 kg, coming from emission sources upstream in Belgium. [Pg.389]

Fig. 8-28. Cathodic polarization curves for several redox reactions of hydrated redox particles at an n-type semiconductor electrode of zinc oxide in aqueous solutions (1) = 1x10- MCe at pH 1.5 (2) = 1x10 M Ag(NH3) atpH12 (3) = 1x10- M Fe(CN)6 at pH 3.8 (4)= 1x10- M Mn04- at pH 4.5 IE = thermal emission of electrons as a function of the potential barrier E-Et, of the space charge layer. [From Memming, 1987.]... Fig. 8-28. Cathodic polarization curves for several redox reactions of hydrated redox particles at an n-type semiconductor electrode of zinc oxide in aqueous solutions (1) = 1x10- MCe at pH 1.5 (2) = 1x10 M Ag(NH3) atpH12 (3) = 1x10- M Fe(CN)6 at pH 3.8 (4)= 1x10- M Mn04- at pH 4.5 IE = thermal emission of electrons as a function of the potential barrier E-Et, of the space charge layer. [From Memming, 1987.]...

See other pages where Emission of zinc is mentioned: [Pg.248]    [Pg.4627]    [Pg.113]    [Pg.85]    [Pg.248]    [Pg.4627]    [Pg.113]    [Pg.85]    [Pg.508]    [Pg.143]    [Pg.161]    [Pg.219]    [Pg.45]    [Pg.270]    [Pg.331]    [Pg.364]    [Pg.365]    [Pg.367]    [Pg.390]    [Pg.572]    [Pg.767]    [Pg.50]    [Pg.55]    [Pg.80]    [Pg.93]    [Pg.1198]    [Pg.304]    [Pg.950]    [Pg.251]    [Pg.576]    [Pg.635]    [Pg.35]    [Pg.199]    [Pg.8]    [Pg.169]    [Pg.131]    [Pg.220]   
See also in sourсe #XX -- [ Pg.1207 ]




SEARCH



© 2024 chempedia.info