Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elements coordination compounds

Why should most of the transition element coordination compounds be colored (absorb light in the visible region) and some, such as those of Zn(ll), be white (no absorption) ... [Pg.561]

Other Inorganics. Inorganic species in solution have been studied very effectively by Raman spectroscopy. Work in this area includes the investigation of coordination compounds (qv) of fluorine (qv) (40), the characterization of low dimensional materials (41) and coordinated ligands (42), and single-crystal studies (43). Several compilations of characteristic vibrational frequencies of main-group elements have been pubflshed to aid in the identification of these species (44,45). [Pg.213]

Ternary compounds are also named by citing the more electropositive constituent first. The various oxidation states of the more electropositive element are designated by a system of prefixes and terminations added to a stem characteristic of the element, except in the case of coordination compounds (qv). Examples are as follows (see Chlorine oxygen acids and salts) ... [Pg.115]

Trialkyl- and triarylarsine sulfides have been prepared by several different methods. The reaction of sulfur with a tertiary arsine, with or without a solvent, gives the sulfides in almost quantitative yields. Another method involves the reaction of hydrogen sulfide with a tertiary arsine oxide, hydroxyhahde, or dihaloarsorane. X-ray diffraction studies of triphenylarsine sulfide [3937-40-4], C gH AsS, show the arsenic to be tetrahedral the arsenic—sulfur bond is a tme double bond (137). Triphenylarsine sulfide and trimethylarsine sulfide [38859-90-4], C H AsS, form a number of coordination compounds with salts of transition elements (138,139). Both trialkyl- and triarylarsine selenides have been reported. The trialkyl compounds have been prepared by refluxing trialkylarsines with selenium powder (140). The preparation of triphenylarsine selenide [65374-39-2], C gH AsSe, from dichlorotriphenylarsorane and hydrogen selenide has been reported (141), but other workers could not dupHcate this work (140). [Pg.338]

A coordination compound, or complex, is formed when a Lewis base (ligand) is attached to a Lewis acid (acceptor) by means of a lone-pair of electrons. Where the ligand is composed of a number of atoms, the one which is directly attached to the acceptor is called the donor atom . This type of bonding has already been discussed (p. 198) and is exemplified by the addition compounds formed by the trihalides of the elements of Group 13 (p. 237) it is also the basis of much of the chemistry of the... [Pg.905]

A further indication of the rapid advances that have occurred in the chemistry of the elements during the past 15 years can be gauged from the several completely new sections which have been added to review work in what were previously both nonexistent and unsuspected areas. These include (a) coordination compounds of dihapto-dihydrogen, (b) the fullerenes and their many derivatives, (c) the metcars, and (d) high-temperature oxide superconductors. [Pg.1361]

Very recently, the coordination chemistry of low valent silicon ligands has been established as an independent, rapidly expanding research area. With the discovery of stable coordination compounds of silylenes [35-38], a major breakthrough was achieved. Within a short time a variety of stable complexes with a surprising diversity of structural elements was realized. Besides neutral coordination compounds (A, B) [35, 36, 38], and cationic compounds (C) [37], also cyclic bissilylene complexes (D) [39,40] exist. A common feature of the above-mentioned compounds is the coordination of an additional stabilizing base (solvent) to the silicon. However, base-free silylene complexes (A) are also accessible as reactive intermediates at low temperatures. [Pg.3]

In the last example, a serious handicap is the extreme sensitivity of the calculations to the parameterization of the metal atoms. In a paper concerning the spin states of metal dimer complexes (38) as studied by EHT, heavy manipulation of the original theory was needed. In the field of transition metal coordination compounds self-consistent charge (SCC) calculations (of the type already mentioned for electronegative atoms) are essential to obtain the diagonal elements Hu. [Pg.31]

Greenwood, N. N., and Earnshaw, A. (1997). Chemistry of the Elements, 2nd ed. Butterworth-Heinemann, Oxford, UK. A monumental reference work that contains a wealth of information on many types of coordination compounds. [Pg.613]


See other pages where Elements coordination compounds is mentioned: [Pg.117]    [Pg.118]    [Pg.269]    [Pg.528]    [Pg.117]    [Pg.118]    [Pg.269]    [Pg.528]    [Pg.259]    [Pg.433]    [Pg.116]    [Pg.176]    [Pg.176]    [Pg.333]    [Pg.338]    [Pg.438]    [Pg.165]    [Pg.165]    [Pg.174]    [Pg.114]    [Pg.948]    [Pg.336]    [Pg.99]    [Pg.135]    [Pg.14]    [Pg.15]    [Pg.47]    [Pg.48]    [Pg.457]    [Pg.290]    [Pg.1012]    [Pg.357]    [Pg.356]    [Pg.3]    [Pg.373]    [Pg.409]    [Pg.863]    [Pg.132]   
See also in sourсe #XX -- [ Pg.286 ]




SEARCH



Coordination elements

Elements compounds

The Transition Elements and Their Coordination Compounds

Transition elements coordination compounds

© 2024 chempedia.info