Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic reactions aluminum compounds

The 5(2H)-oxazolones (213) present two sites, C(4) and C(5), to nucleophilic attack they usually react at the latter. The benzylidene derivative (214), the most thoroughly studied member of this class, possesses an additional electrophilic centre at the exocyclic carbon atom. However, alkaline hydrolysis of this compound affords phenylacetamide and benzoylformic acid by acyl-oxygen fission (equation 50). a-Keto acids are also obtained when 2-trifluoromethyl-5(4//)-oxazolones are hydrolyzed, the reaction involving preliminary isomerization to a 5(2//)-oxazolone. The example shown in equation (51) represents the first non-enzymatic synthesis of an optically active a-keto acid. An instance of nucleophilic attack at C(4) of a 5(2//)-oxazolone is the formation of the oxazolidinone (215) in a Grignard reaction (equation 52). However, the typical behaviour of unsaturated pseudooxazolones like (214) is conjugate addition of a nucleophile, followed by further transformations of the resulting 5(4F/)-oxazoIones. This is illustrated by the reaction of compound (214) with benzene in the presence of aluminum chloride to yield, after aqueous work-up, the acylamino acid (216 equation 53). [Pg.206]

The initiation mechanism of olefins by AIB3 was explained similarly. The intermediate compound of aluminum bromide and the olefin is expected to lose HBr. Although initially the reaction mixture is free from protonic acid, it could form under conditions where initiation takes place by a conjugate acid catalyzed system. In addition, all cationic polymerizations of olefins should be considered as typical examples of general carbocadonic reactivity in electrophilic reactions. The s arate mechanisms are to be looked upon as various examples that differ only in the nature of the initial electrophile. They always lead to the related trivalent alkyl cation when polymeric chain growth is initiated ... [Pg.88]

Various well-defined aluminum compounds, essentially cationic derivatives, have also been recently and successfully used as discrete Lewis acids for the direct cationic ROP of PO and CHO [44-49] and representative examples of such compounds are depicted above (compounds 9-14, Fig. 4). For the most part, these electrophilic species are extremely efficient initiators for the direct ROP of epoxides such as PO and CHO, with polymerization reactions presumably... [Pg.136]

Anthraquinone dyes are derived from several key compounds called dye intermediates, and the methods for preparing these key intermediates can be divided into two types (/) introduction of substituent(s) onto the anthraquinone nucleus, and (2) synthesis of an anthraquinone nucleus having the desired substituents, starting from benzene or naphthalene derivatives (nucleus synthesis). The principal reactions ate nitration and sulfonation, which are very important ia preparing a-substituted anthraquiaones by electrophilic substitution. Nucleus synthesis is important for the production of P-substituted anthraquiaones such as 2-methylanthraquiQone and 2-chloroanthraquiaone. Friedel-Crafts acylation usiag aluminum chloride is appHed for this purpose. Synthesis of quinizatia (1,4-dihydroxyanthraquiQone) is also important. [Pg.309]

Friedel-Crafts acylation of aromatic compounds (Section 12.7) Acyl chlorides and carboxylic acid anhydrides acylate aromatic rings in the presence of aluminum chloride. The reaction is electrophilic aromatic substitution in which acylium ions are generated and attack the ring. [Pg.710]

A reaction in which an electrophile participates in het-erolytic substitution of another molecular entity that supplies both of the bonding electrons. In the case of aromatic electrophilic substitution (AES), one electrophile (typically a proton) is substituted by another electron-deficient species. AES reactions include halogenation (which is often catalyzed by the presence of a Lewis acid salt such as ferric chloride or aluminum chloride), nitration, and so-called Friedel-Crafts acylation and alkylation reactions. On the basis of the extensive literature on AES reactions, one can readily rationalize how this process leads to the synthesis of many substituted aromatic compounds. This is accomplished by considering how the transition states structurally resemble the carbonium ion intermediates in an AES reaction. [Pg.225]

When the metallic additive to the intermediate 374 was zinc dihalide (or another Lewis acid, such as aluminum trichloride, iron trichloride or boron trifluoride), a conjugate addition to electrophilic olefins affords 381 . In the case of the lithium-zinc transmetallation, a palladium-catalyzed Negishi cross-coupling reaction with aryl bromides or iodides allowed the preparation of arylated componnds 384 ° in 26-77% yield. In addition, a Sn2 allylation of the mentioned zinc intermediates with reagents of type R CH=CHCH(R )X (X = chlorine, bromine) gave the corresponding compounds 385 in 52-68% yield. ... [Pg.710]

The electrophilic substitution of the 3-aryl compounds (265, R = Ar, R = H) exemplified by the formation of 5-bromo- (265, R = Ar, R = Br) and 5-nitro derivatives (265, R = Ar, R = NOj) has been put forward as evidence against the meso-ionic formulation 265. lliis approach is unacceptable since ground state charge distribution cannot be deduced from reaction products. The aluminum-amalgam reduction of meso-ionic l,2,3-thiadiazol-4-ones (265) yields either N-mercaptoacetyl-A-arylhydrazines or Ar-acyl-A-arylbydrazines. Triethyl-oxonium tetrafluoroborate and meso-ionic l,2,3-thiadiazol-4-ones (265) yield 1,2,3-thiadiazolium tetrafluoroborates (267). The effect of solvent on the ultraviolet spectra of meso-ionic l,2,3-thiadiazol-4-ones (265) has been reported. ... [Pg.56]

The Friedel-Crafts alkylation of aromatic compounds by oxetanes in the presence of aluminum chloride is mechanistically similar to the solvolyses above, since the first step is electrophilic attack on the ring oxygen by aluminum chloride, followed by a nucleophilic attack on an a-carbon atom by the aromatic compound present. The reaction of 2-methyloxetane and 2-phenyloxetane with benzene, toluene and mesitylene gave 3-aryl-3 -methyl-1-propanols and 3-aryl-3-phenyl-l-propanols as the main products and in good yields (equation 27). Minor amounts of 3-chloro-l-butanol and 4-chloro-2-butanol are formed as by-products from 2-methyloxetane, and of 3-phenyl-l-propanol from 2-phenyloxetane (73ACS3944). [Pg.381]


See other pages where Electrophilic reactions aluminum compounds is mentioned: [Pg.551]    [Pg.555]    [Pg.104]    [Pg.905]    [Pg.86]    [Pg.905]    [Pg.10]    [Pg.131]    [Pg.10]    [Pg.555]    [Pg.46]    [Pg.555]    [Pg.294]    [Pg.87]    [Pg.46]    [Pg.10]    [Pg.331]    [Pg.575]    [Pg.553]    [Pg.559]    [Pg.60]    [Pg.164]    [Pg.233]    [Pg.148]    [Pg.158]    [Pg.275]    [Pg.377]    [Pg.273]    [Pg.412]    [Pg.27]    [Pg.42]    [Pg.789]    [Pg.647]    [Pg.219]    [Pg.224]    [Pg.241]    [Pg.604]    [Pg.607]   
See also in sourсe #XX -- [ Pg.673 ]




SEARCH



Aluminum compounds reactions

© 2024 chempedia.info