Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

ELECTROPHILIC IRON COMPLEXES

Diels-Alder reactions, 4, 842 flash vapour phase pyrolysis, 4, 846 reactions with 6-dimethylaminofuKenov, 4, 844 reactions with JV,n-diphenylnitrone, 4, 841 reactions with mesitonitrile oxide, 4, 841 structure, 4, 715, 725 synthesis, 4, 725, 767-769, 930 theoretical methods, 4, 3 tricarbonyl iron complexes, 4, 847 dipole moments, 4, 716 n-directing effect, 4, 44 2,5-disubstituted synthesis, 4, 116-117 from l,3-dithiolylium-4-olates, 6, 826 electrocyclization, 4, 748-750 electron bombardment, 4, 739 electronic deformation, 4, 722-723 electronic structure, 4, 715 electrophilic substitution, 4, 43, 44, 717-719, 751 directing effects, 4, 752-753 fluorescence spectra, 4, 735-736 fluorinated derivatives, 4, 679 H NMR, 4, 731 Friedel-Crafts acylation, 4, 777 with fused six-membered heterocyclic rings, 4, 973-1036 fused small rings structure, 4, 720-721 gas phase UV spectrum, 4, 734 H NMR, 4, 7, 728-731, 939 solvent effects, 4, 730 substituent constants, 4, 731 halo... [Pg.894]

Air sensitive (ij4-l//-azepine)tricarbonyliron(0) (28) on treatment with tropylium tetrafluoro-borate undergoes electrophilic substitution to yield the 3-substituted iron complex 29.118... [Pg.167]

The mechanism and synthetic scope of reactions of monohaptopropargyl-iron complexes has been described earlier (see Schemes 30-33 in Section IV,A,2). By using sulfur dioxide and sulfur trioxide as electrophilic reagents, it is possible to synthesize metal-containing heterocycles in the reduced 1,2-oxathiole category (sultines and sultones) (Scheme 119).182-184 An... [Pg.372]

The iron-mediated construction of the carbazole framework proceeds via consecutive C-C and C-N bond formation as key steps [70,71]. The C-C bond formation is achieved by electrophilic substitution of the arylamine with a tricarbonyliron-coordinated cyclohexadienyl cation. The parent iron complex salt for electrophilic substitutions, tricarbonyl[/j -cyclohexadienylium] iron tetrafluoroborate 6a, is readily available by azadiene-catalyzed complexation and subsequent hydride abstraction (Scheme 9). [Pg.122]

The reaction of the complex salt 6a with the arylamine 12 affords by regio-selective electrophilic substitution the iron complex 13 [88] (Scheme 11). The oxidative cyclization of complex 13 with very active manganese dioxide provides directly mukonine 14, which by ester cleavage was converted to mukoeic acid 15 [89]. Further applications of the iron-mediated construction of the carbazole framework to the synthesis of 1-oxygenated carbazole alkaloids include murrayanine, koenoline, and murrayafoline A [89]. [Pg.124]

The iron-mediated synthesis of 2-oxygenated carbazole alkaloids is limited and provides only a moderate yield (11%) for the oxidative cyclization to 2-methoxy-3-methylcarbazole using iodine in pyridine as the reagent [90]. Ferricenium hexafluorophosphate is the superior reagent for the iron-mediated arylamine cyclization leading to 3-oxygenated carbazoles (Scheme 12). Electrophilic substitution of the arylamines 16 with the complex salt 6a leads to the iron complexes 17. Oxidative cyclization of the complexes 17 with an excess of ferricenium hexafluorophosphate in the presence of sodium carbonate affords... [Pg.124]

The carbazole-1,4-quinol alkaloids are also accessible by the iron-mediated arylamine cyclization (Scheme 14). Electrophilic substitution reaction of the arylamine 24 with the complex salts 6a and 6b affords the iron complexes 25. Protection to the acetates 26 and oxidative cyclization with very active manganese dioxide leads to the carbazoles 27, which are oxidized to the carbazole-... [Pg.125]

Acyl complexes can also result from the reaction of terminal alkynes with cationic, hydrated complexes of iron (Entry 4, Table 2.7) [47]. An electrophilic vinylidene complex is probably formed as intermediate this then reacts with water and tautomerizes to the acyl complex. [Pg.20]

Dimethylsulhde can be eliminated from a-(dimethylsulfonium)alkyl complexes simply by heating (Figure 3.15). The resulting, very reactive, electrophilic iron carbene complexes cannot usually be isolated but are generated directly in the presence of a suitable reactant, e.g. an olefin. Cationic nickel [475] and tungsten [476] carbene complexes have been prepared by similar routes. [Pg.88]

Because electrophilic carbene complexes can cyclopropanate alkenes under mild reaction conditions (Table 3.1) [438,618-620], these complexes can serve as stoichiometric reagents for the cyclopropanation of organic compounds. Thoroughly investigated carbene complexes for this purpose are neutral complexes of the type (C0)5M=CR2 (M Cr, Mo, W) and cationic iron(IV) carbene complexes. The mechanism of cyclopropanation by electrophilic carbene complexes has been discussed in Section 1.3. [Pg.106]

Fig. 3.38. Possible mechanism for the insertion of electrophilic iron(IV) carbene complexes into aliphatic C-H bonds. Fig. 3.38. Possible mechanism for the insertion of electrophilic iron(IV) carbene complexes into aliphatic C-H bonds.
The cobalt complex is cleaved by Cl2/PPh3 with complete racemization, whereas the iron complexes may be cleaved with retention, inversion or racemization, depending on the electrophile and the substrate (Table 4). [Pg.96]

Tricarbonyliron-coordinated cyclohexadienylium ions 569 were shown to be useful electrophiles for the electrophilic aromatic substitution of functionally diverse electron-rich arylamines 570. This reaction combined with the oxidative cyclization of the arylamine-substituted tricarbonyl(ri -cyclohexadiene)iron complexes 571, leads to a convergent total synthesis of a broad range of carbazole alkaloids. The overall transformation involves consecutive iron-mediated C-C and C-N bond formation followed by aromatization (8,10) (Schemes 5.24 and 5.25). [Pg.206]

The electrophilic aromatic substitution of 655 with the iron-complexed cation 602 afforded the iron complex 657 in almost quantitative yield. Treatment of 657 with... [Pg.222]

Electrophilic aromatic substitution of 3-methoxy-4-methylaniline (655) using the 2-methoxy-substituted iron complex salt 665, followed by oxidative cyclization with concomitant aromatization of the resulting iron complex salt 666, affords 2,7-dimethoxy-3-methylcarbazole (667). Oxidation of the carbazole 667 with DDQ... [Pg.225]

Electrophilic aromatic substitution of 708 with the iron-coordinated cation 602 afforded the iron-complex 714 quantitatively. The iron-mediated quinone imine cyclization of complex 714, by sequential application of two, differently activated, manganese dioxide reagents, provided the iron-coordinated 4b,8a-dihydrocarbazole-3-one 716. Demetalation of the iron complex 716 with concomitant... [Pg.233]

Electrophilic substitution at the arylamine 709 using the complex salt 602, provided the iron complex 725 quantitatively. Sequential, highly chemoselective oxidation of the iron complex 725 with two, differently activated, manganese dioxide reagents provided the tricarbonyliron-complexed 4b,8a-dihydrocarbazol-3-one (727) via the non-cyclized quinone imine 726. Demetalation of the tricarbonyliron-complexed 4b,8a-dihydrocarbazol-3-one (727), followed by selective O-methylation, provided hyellazole (245) (599,600) (Scheme 5.70). [Pg.236]

Electrophilic substitution of the arylamine 709 with the complex salt 602 gave the iron complex 725 quantitatively. The iron-mediated arylamine cyclization, by... [Pg.237]

An attempt to directly convert hyellazole (245) to 6-chlorohyellazole (246) by reaction with N-chlorosuccinimide in the presence of a catalytic amount of hydrochloric acid led exclusively to 4-chlorohyellazole. On the other hand, bromination of 245 using NBS and a catalytic amount of hydrobromic acid gave only the expected 6-bromohyellazole (733). Alternatively, a direct one-pot transformation of the iron complex 725 to 6-bromohyellazole (733) was achieved by reaction with an excess of NBS and switching from oxidative cyclization conditions (basic reaction medium) to electrophilic substitution conditions (acidic reaction medium). Finally, a halogen exchange reaction with 4 equivalents of cuprous chloride in N,N-dimethylformamide (DMF) at reflux, transformed 6-bromohyellazole (733) into 6-chlorohyellazole (246) (602) (Scheme 5.73). [Pg.238]

Electrophilic aromatic substitution of the arylamine 780a using the iron-complex salt 602 afforded the iron-complex 785. Oxidative cyclization of complex 785 in toluene at room temperature with very active manganese dioxide afforded carbazomycin A (260) in 25% yield, along with the tricarbonyliron-complexed 4b,8a-dihydro-3H-carbazol-3-one (786) (17% yield). The quinone imine 786 was also converted to carbazomycin A (260) by a sequence of demetalation and O-methylation (Scheme 5.86). The synthesis via the iron-mediated arylamine cyclization provides carbazomycin A (260) in two steps and 21% overall yield based on 602 (607-609) (Scheme 5.86). [Pg.245]

The arylamine 780b required for the total synthesis of carbazomycin B (261) was obtained by catalytic hydrogenation, using 10% palladium on activated carbon, of the nitroaryl derivative 784 which was obtained in six steps and 33% overall yield starting from 2,3-dimethylphenol 781 (see Scheme 5.85). Electrophilic substitution of the arylamine 780b with the iron-complex salt 602 provided the iron complex 787 in quantitative yield. The direct, one-pot transformation of the iron complex 787 to carbazomycin B 261 by an iron-mediated arylamine cyclization was unsuccessful, probably because the unprotected hydroxyarylamine moiety is too sensitive towards the oxidizing reaction conditions. However, the corresponding 0-acetyl derivative... [Pg.247]

The total synthesis of carbazomycin C (262) was achieved by executing similar reaction sequences as in the iron-mediated arylamine cyclization route described for the synthesis of carbazomycin B (261) (see Scheme 5.87). The electrophilic substitution of the arylamine 780b using the complex salt 779 afforded the iron complex 797, which was transformed to the corresponding acetate 798. Using very active manganese dioxide, compound 798 was cyclized to O-acetylcarbazomycin C (799). Finally, saponification of the ester afforded carbazomycin C (262) (four steps and 25% overall yield based on 779) (611) (Scheme 5.90). [Pg.250]

The total synthesis of carbazomycin D (263) was completed using the quinone imine cyclization route as described for the total synthesis of carbazomycin A (261) (see Scheme 5.86). Electrophilic substitution of the arylamine 780a by reaction with the complex salt 779 provided the iron complex 800. Using different grades of manganese dioxide, the oxidative cyclization of complex 800 was achieved in a two-step sequence to afford the tricarbonyliron complexes 801 (38%) and 802 (4%). By a subsequent proton-catalyzed isomerization, the 8-methoxy isomer 802 could be quantitatively transformed to the 6-methoxy isomer 801 due to the regio-directing effect of the 2-methoxy substituent of the intermediate cyclohexadienyl cation. Demetalation of complex 801 with trimethylamine N-oxide, followed by O-methylation of the intermediate 3-hydroxycarbazole derivative, provided carbazomycin D (263) (five steps and 23% overall yield based on 779) (611) (Scheme 5.91). [Pg.250]

The construction of the carbazole framework was achieved by slightly modifying the reaction conditions previously reported for the racemic synthesis (614). Reaction of the iron complex salt 602 with the fully functionalized arylamine 814 in air provided the tricarbonyliron-coordinated 4b,8a-dihydrocarbazole complex 819 via sequential C-C and C-N bond formation. This one-pot annulation is the result of an electrophilic aromatic substitution and a subsequent iron-mediated oxidative cyclization by air as the oxidizing agent. The aromatization with concomitant demetalation of complex 819 using NBS under basic reaction conditions, led to the carbazole. Using the same reagent under acidic reaction conditions the carbazole was... [Pg.253]

Construction of the carbazole framework was achieved by slightly modifying the reaction conditions previously reported for the racemic synthesis (641,642). The reaction of the (R)-arylamine 928 with the iron complex salt 602 in air provided by concomitant oxidative cyclization the tricarbonyliron-complexed 4b,8a-dihydro-9H-carbazole (931). Demetalation of the complex 931, followed by aromatization and regioselective electrophilic bromination, afforded the 6-bromocarbazole 927, which represents a crucial precursor for the synthesis of the 6-substituted carbazole... [Pg.272]

Electrophilic aromatic substitution of the 4-aminobenzofuran 1103 with the complex salt 602 afforded the iron complex 1109 in quantitative yield. Cyclization of the complex 1109 with concomitant aromatization was achieved by oxidation with an excess of iodine in pyridine at 90 °C in air to afford directly furostifoline (224) (688,689) (Scheme 5.179). [Pg.307]

Four years later, we reported an improved iron-mediated total synthesis of furostifoline (224) (689). This approach features a reverse order of the two cyclization reactions by first forming the carbazole nucleus, then annulation of the furan ring. As a consequence, in this synthesis the intermediate protection of the amino function is not necessary (cf. Schemes 5.178 and 5.179). The electrophilic aromatic substitution at the arylamine 1106 by reaction with the iron complex salt 602 afforded the iron... [Pg.307]

A variety of transition metal-carbene complexes have been prepared and characterized. None of these are known to efficiently effect intermolecular C-H insertion. An electrophilic iron carbcne complex can, however, participate in intramolecular C-H insertions (Section I.2.2.3.2.I.). More commonly, transition metal complexes are used to catalyze intramolecular C-H insertion starting with a diazo precursor. In these cases, the intermediate metal carbene complexes are not isolated. [Pg.1136]

It has been demonstrated35 that enolate trapping by the electrophilic iron-carbene complex 1 provides 2. Alkylation at sulfur followed by a-elimination again generates a carbene, which then inserts stoichiometrically 1,5 into the C —H bond to give the octahydroindenone 3. Several other applications of this cyclization have been published 3fi. [Pg.1137]


See other pages where ELECTROPHILIC IRON COMPLEXES is mentioned: [Pg.1131]    [Pg.1131]    [Pg.192]    [Pg.100]    [Pg.347]    [Pg.44]    [Pg.271]    [Pg.300]    [Pg.976]    [Pg.133]    [Pg.106]    [Pg.109]    [Pg.124]    [Pg.97]    [Pg.212]    [Pg.252]    [Pg.254]    [Pg.308]    [Pg.964]    [Pg.115]    [Pg.98]   


SEARCH



Electrophilic reactions iron carbonyl complexes

Tricarbonyl iron complexes electrophilic attack

© 2024 chempedia.info