Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic centers

Ambident reactivity occurs for any substance displaying protomeric behavior. In basic medium anions in which negative charge is delocalized are formed this may be represented by the resonance formulas in Scheme 2. Each charged atom may react with an electrophilic center. The... [Pg.5]

The equation does not take into account such pertubation factors as steric effects, solvent effects, and ion-pair formation. These factors, however, may be neglected when experiments are carried out in the same solvent at the same temperature and concentration for an homogeneous set of substrates. So, for a given ambident nucleophile the rate ratio kj/kj will depend on A and B, which vary with (a) the attacked electrophilic center, (b) the solvent, and (c) the counterpart cationic species of the anion. The important point in this kind of study is to change only one parameter at a time. This simple rule has not always been followed, and little systematic work has been done in this field (12) stiH widely open after the discovery of the role played by single electron transfer mechanism in ambident reactivity (1689). [Pg.6]

This section is organized according to the electrophilic center presented to the nucleophilic nitrogen of the active species. This organization allow s a consistent treatment of the reactivity. However, a small drawback arises when ambident electrophilic centers are considered, and these cases are treated as if the more reactive center were known, which is not always the case. [Pg.31]

The amino group activates the thiazole ring toward electrophilic centers. This point is illustrated by the rate constants of the reaction between 2-dialkylaminothiazoles (32) and methyl iodide in nitromethane at 25 C (Scheme 23) (158). The steric effects of substituents on nitrogen are... [Pg.32]

Thus in neutral medium the reactivity of 2-aminothiazoles derivatives toward sp C electrophilic centers usually occurs through the ring nitrogen. A notable exception is provided by the reaction between 2-amino-thiazole and a solution (acetone-water, 1 1) of ethylene oxide (183) that yields 2-(2-hydroxyethylamino)thiazole (39) (Scheme 28), Structure 39... [Pg.34]

All the examples of reactivity in acidic medium (Scheme 40) involve a reagent with a sp C hybridized electrophilic center, but the actual reactive species generated bears a sp C electrophilic center. In this case, exocyclic N-alkylation is not surprising (see Section III.2). [Pg.39]

Thus the reactivity of 2-aminothiazole derivatives toward reactants bearing a sp C hybridized electrophilic center follows the general pattern ... [Pg.39]

Reactions with Reagents Bearing an sp C Electrophilic Center... [Pg.40]

In most of the following reactions the reagent possesses two electrophilic centers, one of them being a sp hybridized carbon however. [Pg.57]

Treatment of 2-imino-3-phenyl-4-amino-(5-amido)-4-thiazoline with isocyanates or isothiocyanates yields the expected product (139) resulting from attack of the exocyclic nitrogen on the electrophilic center (276). Since 139 may be acetylated to thiazolo[4,5-d]pyrimidine-7-ones or 7-thiones (140). this reaction provides a route to condensed he erocycles (Scheme 92). [Pg.60]

The problem is more complicated when the ambident nucleophile. 2-aminothiazole, reacts with an ambident electrophilic center. Such an example is provided by the reaction between 2-amino-5-R-thiazole and ethoxycarbonyl isothiocyanate (144), which has been thoroughly studied by Nagano et al. (64, 78, 264) the various possibilities are summarized in Scheme 95. At 5°C, in ethyl acetate, the only observed products were 145a, 148. and 150. Product 148 must be heated to 180°C for 5 hr to give in low yield (25%) the thiazolo[3.2-a]-s-tnazine-2-thio-4-one (148a) (102). This establishes that attack 1-B is probably not possible at -5°C. When R = H the percentages of 145a. 148. and 150 are 29, 50, and 7%, respectively. These results show that ... [Pg.61]

The exocyclic nitrogen is slightly more reactive toward the electrophilic center A than is its ring counterpart. [Pg.61]

Nevertheless, the puzzling fact to be explained is that the harder ring nitrogen prefers the softer electrophilic center and that this preference is more pronounced than the one observed for the amino nitrogen. Much remains to be done to explain ambident heterocyclic reactivity it was shown recently by comparison between Photoelectrons Spectroscopy and kinetic data that not only the frontier densities but also the relative symmetries of nucleophilic occupied orbitals and electrophilic unoccupied orbitals must be taken into consideration (308). [Pg.63]

Ambident reactivity of the same nucleophilic species toward different nitrosation electrophilic centers. [Pg.68]

Aminothiazole in its neutral form seems to be able to react in 3 different positions according to the electrophilic center considered (Scheme 146). The question of C-5 reactivity for this neutral form remains open, however, because the observed product might also be formed from the protonated form of 2-aminothiazoles. A surprising... [Pg.87]

Diazo coupling involves the N exocyclic atom of the diazonium salt, which acts as an electrophilic center. The diazonium salts of thiazoles couple with a-naphthol (605). 2-nitroresorcinol (606), pyrocatechol (607-609), 2.6-dihydroxy 4-methyl-5-cyanopyridine (610). and other heteroaromatic compounds (404. 611) (Scheme 188). The rates of coupling between 2-diazothicizolium salts and 2-naphthol-3.6-disulfonic acid were measured spectrophotometrically and found to be slower than that of 2-diazopyridinium salts but faster than that of benzene diazonium salts (561 i. The bis-diazonium salt of bis(2-amino-4-methylthiazole) couples with /3-naphthol to give 333 (Scheme 189) (612). The products obtained from the diazo coupling are usuallv highly colored (234. 338. 339. 613-616). [Pg.112]

Data are lacking on the mechanisms of these reactions, but knowledge of other series suggests that the first step is attack of the exocyclic sulfur of 66 on the exocyclic sulfur of 67 converted into an electrophilic center by catalysis (Scheme 31). [Pg.393]

Mercury and tin in complexes (68 or 69) (Scheme 32 (154 mav behave as electrophilic centers (155. 156). Under basic conditions, the reactive species is an ambident anion (70) (Scheme 33). [Pg.394]

Reaction takes place on nitrogen when the electrophilic center is an sp carbon, particularly if it is charged. Thus Mannich reaction yields the N-substituted compound (71 and 72) (Scheme 34) (54. 157-159). The same reaction is reported with piperidine, o-toluidine. and methylaniline (158). [Pg.394]

Acrylonitrile reacts with the sodium salt of 4.5-dimethvl-A-4-thiazoline-2-thione (73J (R4 = R5 = Me) to yield 3-(2-cyanoethyl)-4.5-dimethyl-A-4-thiazoline-2-thione (74) (R4 = R, = Me) (Scheme 35 (160). Humphlett s studies of this reaction showed that the size of the R4 substituent is a determinant factor for the S versus N ratio (161. 162). If R4 == H, 100% of the N-substituted product (74) is obtained this drops to 50% when R4 = methyl, and only the S-substituted product (75) is obtained when R4 = phenyl. The same trend is observed with various CH2 = CH-X (X = C00CH3. COCH3) reagents (149). The S/N ratio also depends on the electrophilic center for CH2 = CH-X systems thus S-reaction occurs predominantly with acrylonitrile, whereas N-substitution predominates with methvlvinvlketone (149). [Pg.394]

It is noteworthy that some catalysts convert thioethers to quaternary salts where the reactive electrophilic center is no longer one of the two C centers but the C sp center of the thiazolium salt (284. 285). Thus... [Pg.406]

A-2-Thiazoline-4-one possesses three nucleophilic centers (the C-5 atom, the oxygen, and the nitrogen) and two electrophilic centers (the C-4 and C-2 atOT.rs). In the literature all these reactive centers have been involved in autocondensation reactions. [Pg.423]


See other pages where Electrophilic centers is mentioned: [Pg.6]    [Pg.18]    [Pg.31]    [Pg.32]    [Pg.33]    [Pg.50]    [Pg.55]    [Pg.56]    [Pg.58]    [Pg.63]    [Pg.63]    [Pg.65]    [Pg.66]    [Pg.88]    [Pg.393]    [Pg.399]    [Pg.406]   
See also in sourсe #XX -- [ Pg.411 ]

See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Arylation with Electrophilic C-Centered Radicals

Basic Organic Reactions with Electrophilic Active Centers

Carbon-centered electrophiles

Electrophilic Centers Other than Carbon

Electrophilic Substitution at a Trigonal Planar Center

Electrophilic carbon centers

Electrophilic cationic centers

Electrophilic center definition

Electrophilic center in enzymes

Electrophilic centers ketones)

Electrophilic centers substitution

Electrophilic metal centers

Electrophilic palladium center

Flavin electrophilic centers

Nucleophilic substitution electrophilic centers

Of electrophilic centers

Reactions with Reagents Bearing an spC Electrophilic Center

Rearrangements to an Electrophilic Center

© 2024 chempedia.info