Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronically excited states, formation

Rauhut and coworkers proposed the occurrence of a charge transfer complex between the HEI and the ACT in order to explain the electronically excited-state generation in the peroxyoxalate system. Chemiluminescence quantum yield (4>cl) measurements with different activators have shown that the lower the ACT half-wave oxidation potential (Ei/2° ) or singlet energy (Es), the higher the electronically excited-state formation rate and 4>cl- According to the mechanistic proposal of Schuster and coworkers for the CIEEL... [Pg.1266]

Molecular Interaction. The examples of gas lasers described above involve the formation of chemical compounds in their excited states, produced by reaction between positive and negative ions. However, molecules can also interact in a formally nonbonding sense to give complexes of very short lifetimes, as when atoms or molecules collide with each other. If these sticky collisions take place with one of the molecules in an electronically excited state and the other in its ground state, then an excited-state complex (an exciplex) is formed, in which energy can be transferred from the excited-state molecule to the ground-state molecule. The process is illustrated in Figure 18.12. [Pg.130]

We conclude with a consideration of a few other cobalt self-exchange reactions. The reaction in Eq. (9.33) is faster than that involving the ammine complexes (Eq. 9.30) because the water is a weaker-field ligand than ammonia. Thus, the activation energy for the formation of the electronically excited states is lower, as is the change in Co-ligand distances in the two oxidation states. [Pg.193]

Therefore, it is a very relevant issue the evaluation of molecules and macromolecules that can efficiently act as quenchers of electronically excited states, such as 3RF and 1O2 as examples, to avoid the formation of ROS and/or eliminate them (Wondrak et al., 2006). [Pg.12]

Photolysis reactions often are associated with oxidation because the latter category of reactions frequently can be initiated by light. The photooxidation of phenothiazines with the formation of N- and S-oxides is typical. But photolysis reactions are not restricted to oxidation. In the case of sodium nitroprusside, it is believed that degradation results from loss of the nitro-ligand from the molecule, followed by electronic rearrangement and hydration. Photo-induced reactions are common in steroids [36] an example is the formation of 2-benzoylcholestan-3-one following irradiation of cholest-2-en-3-ol benzoate. Photoadditions of water and of alcohols to the electronically excited state of steroids have also been observed [37],... [Pg.150]

The choice of new complexes was guided by some simple considerations. The overall eel efficiency of any compound is the product of the photoluminescence quantum yield and the efficiency of excited state formation. This latter parameter is difficult to evaluate. It may be very small depending on many factors. An irreversible decomposition of the primary redox pair can compete with back electron transfer. This back electron transfer could favor the formation of ground state products even if excited state formation is energy sufficient (13,14,38,39). Taking into account these possibilities we selected complexes which show an intense photoluminescence (0 > 0.01) in order to increase the probability for detection of eel. In addition, the choice of suitable complexes was also based on the expectation that reduction and oxidation would occur in an appropriate potential range. [Pg.160]

With the advent of picosecond-pulse radiolysis and laser technologies, it has been possible to study geminate-ion recombination (Jonah et al, 1979 Sauer and Jonah, 1980 Tagawa et al 1982a, b) and subsequently electron-ion recombination (Katsumura et al, 1982 Tagawa et al, 1983 Jonah, 1983) in hydrocarbon liquids. Using cyclohexane solutions of 9,10-diphenylanthracene (DPA) and p-terphenyl (PT), Jonah et al. (1979) observed light emission from the first excited state of the solutes, interpreted in terms of solute cation-anion recombination. In the early work of Sauer and Jonah (1980), the kinetics of solute excited state formation was studied in cyclohexane solutions of DPA and PT, and some inconsistency with respect to the solution of the diffusion equation was noted.1... [Pg.295]

If a reaction can yield products in the ground state or in an electronically excited state, the activation energy for the formation of the latter will therefore be less than that required for the formation of the products in the ground state — provided that there is no significant change in the configuration of the excited-state molecules as compared with the reactant molecules. [Pg.69]

The reaction pathway must be favorable to channel the energy for the formation of an electronically excited state. In case the chemical energy is lost as heat, e.g., via vibrational and rotational energy ways, the reaction will not be chemiluminescent. [Pg.46]

All photochemical and photophysical processes are initiated by the absorption of a photon of visible or ultraviolet radiation leading to the formation of an electronically-excited state. [Pg.29]

Absorption of a photon by an organic molecule, R, leads to formation of an electronically-excited state, R ... [Pg.123]

One may consider the relaxation process to proceed in a similar manner to other reactions in electronic excited states (proton transfer, formation of exciplexes), and it may be described as a reaction between two discrete species initial and relaxed.1-7 90 1 In this case two processes proceeding simultaneously should be considered fluorescence emission with the rate constant kF= l/xF, and transition into the relaxed state with the rate constant kR=l/xR (Figure 2.5). The spectrum of the unrelaxed form can be recorded from solid solutions using steady-state methods, but it may be also observed in the presence of the relaxed form if time-resolved spectra are recorded at very short times. The spectrum of the relaxed form can be recorded using steady-state methods in liquid media (where the relaxation is complete) or using time-resolved methods at very long observation times, even as the relaxation proceeds. [Pg.87]

This mechanism has been formulated in analogy to the known electrochemiluminescence, in which radical-ion annihilation generated at opposite electrodes leads to the formation of the electronically excited state (Scheme 2) . The difference between the CIEEL mechanism and electrochemiluminescence is that, in the former, the radical ions—whose annihilation is responsible for the formation of the excited state—are formed chemically by electron transfer to high-energy peroxides and subsequent bond cleavage or rearrangements. [Pg.1213]

In this part of the chapter, we will briefly outline the main types of CL reactions which can be functionally classified by the nature of the excitation process that leads to the formation of the electronically excited state of the light-emitting species. Direct chemiluminescence is the term employed for a reaction in which the excited product is formed directly from the unimolecular reaction of a high-energy intermediate that has been formed in prior reaction steps. The simplest example of this type of CL is the unimolecular decomposition of 1,2-dioxetanes, which are isolated HEI. Thermal decomposition of 1,2-dioxetanes leads mainly to the formation of triplet-excited carbonyl compounds. Although singlet-excited carbonyl compounds are produced in much lower yields, their fluorescence emission constitutes the direct chemiluminescence emission observed in these transformations under normal conditions in aerated solutions ... [Pg.1218]

The kinetics of CL reactions can most conveniently be followed by measuring the time course of the emission intensity. The emission intensity at any time of the reaction corresponds to the velocity of excited-state formation and therefore to the velocity of the excitation step (electronic transitions and energy transfer processes should certainly be faster than the excitation step ). Therefore, the emission intensity fm) is determined by the rate constant of the excitation step (kex), the concentration of the HEI and, in the case of activated CL, the concentration of the ACT, as well as the < > and the emission quantum yield of the emitting species ([Pg.1221]

The unimolecular decomposition of 1,2-dioxetanes and 1,2-dioxetanones (a-peroxylac-tones) is the simplest and most exhaustively studied example of a thermal reaction that leads to the formation, in this case in a single elementary step, of the electronically excited state of one of the product molecules. The mechanism of this transformation was studied intensively in the 1970s and early 1980s and several hundreds of 1,2-dioxetane derivatives and some 1,2-dioxetanones were synthesized and their activation parameters and CL quantum yields determined. Thermal decomposition of these cyclic peroxides leads mainly to the formation of triplet-excited carbonyl products in up to 30% yields. However, formation of singlet excited products occurs in significantly lower yields (below... [Pg.1227]

However, the most severe criticism of the CIEEL hypothesis relates to the chemiexcita-tion efficiency experimentally obtained for the standard CIEEL systems, diphenoyl peroxide (4) and 1,2-dioxetanone (2) . In a study on the electron transfer catalyzed decomposition of l,4-dimethoxy-9,10-diphenylanthracence peroxide (21), Catalan and Wilson obtained very low chemiexcitation quantum yields with various commonly utilized activators (4>s =2 10 EmoH ) and reinvestigated the CL of diphenoyl peroxide (4), determining quantum yields in the same order of magnitude (4>s = (2 1)10 Emol ) as those obtained by 21 (Table 1). We have more recently determined the quantum yields in the rubrene-catalyzed decomposition of dimethyl-1,2-dioxetanone (9) and also found a much lower value than the one initially reported (Table 1) °. Since the diphenoyl peroxide and the 1,2-dioxetanone systems are the two prototype CIEEL systems, the validity of this hypothesis itself might be questioned due to its low efficiency in excited-state formation. ... [Pg.1235]

Nevertheless, there are two highly efficient CL systems which are believed to involve the CIEEL mechanism in the chemiexcitation step, i.e. the peroxyoxalate reaction and the electron transfer initiated decomposition of properly substituted 1,2-dioxetanes (Table 1)17,26 We have recently confirmed the high quantum yields of the peroxyoxalate system and obtained experimental evidence for the validity of the CIEEL hypothesis as the excitation mechanism in this reaction. The catalyzed decomposition of protected phenoxyl-substituted 1,2-dioxetanes is believed to be initiated by an intramolecular electron transfer, analogously to the intermolecular CIEEL mechanism. Therefore, these two highly efficient systems demonstrate the feasibility of efficient excited-state formation by subsequent electron transfer, chemical transformation (cleavage) and back-electron transfer steps, as proposed in the CIEEL hypothesis. [Pg.1236]


See other pages where Electronically excited states, formation is mentioned: [Pg.262]    [Pg.423]    [Pg.411]    [Pg.894]    [Pg.1054]    [Pg.854]    [Pg.379]    [Pg.266]    [Pg.894]    [Pg.1054]    [Pg.150]    [Pg.392]    [Pg.195]    [Pg.169]    [Pg.690]    [Pg.242]    [Pg.306]    [Pg.355]    [Pg.376]    [Pg.109]    [Pg.347]    [Pg.47]    [Pg.71]    [Pg.72]    [Pg.182]    [Pg.1215]    [Pg.1215]    [Pg.1217]    [Pg.1217]    [Pg.1217]    [Pg.1234]   


SEARCH



Electron-excitation states

Electronic excited

Electronic excited states

Electronical excitation

Electrons excitation

Electrons, excited

Excited state formation

Formation of electronically excited states

State formation

© 2024 chempedia.info