Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactive modifications

Uses Chem. intermediate for coatings and polymer modification reactive diluent tor radiation and peroxide cure applies. [Pg.174]

This chapter present a state-of-the-art review of the field with examples that are presented in two parts. Part I is focused on polymerization reactions by chain addition and step growth mechanisms, while Part II describes reactive modifications of polymers via side group modifications, reactive blending, or depolymerizations reactions. Future directions and research needs are also presented. [Pg.254]

The scope of tire following article is to survey the physical and chemical properties of tire tliird modification of carbon, namely [60]fullerene and its higher analogues. The entluisiasm tliat was triggered by tliese spherical carbon allotropes resulted in an epidemic-like number of publications in tire early to mid-1990s. In more recent years tire field of fullerene chemistry is, however, dominated by tire organic functionalization of tire highly reactive fullerene... [Pg.2408]

The metal has a silvery appearance and takes on a yellow tarnish when slightly oxidized. It is chemically reactive. A relatively large piece of plutonium is warm to the touch because of the energy given off in alpha decay. Larger pieces will produce enough heat to boil water. The metal readily dissolves in concentrated hydrochloric acid, hydroiodic acid, or perchloric acid. The metal exhibits six allotropic modifications having various crystalline structures. The densities of these vary from 16.00 to 19.86 g/cms. [Pg.205]

The results in table 2.6 show that the rates of reaction of compounds such as phenol and i-napthol are equal to the encounter rate. This observation is noteworthy because it shows that despite their potentially very high reactivity these compounds do not draw into reaction other electrophiles, and the nitronium ion remains solely effective. These particular instances illustrate an important general principle if by increasing the reactivity of the aromatic reactant in a substitution reaction, a plateau in rate constant for the reaction is achieved which can be identified as the rate constant for encounter of the reacting species, and if further structural modifications of the aromatic in the direction of further increasing its potential reactivity ultimately raise the rate constant above this plateau, then the incursion of a new electrophile must be admitted. [Pg.29]

The significance of establishing a limiting rate of reaction upon encounter for mechanistic studies has been pointed out ( 2.5). In studies of reactivity, as well as settii an absolute limit to the significance of reactivity in particular circumstances, the experimental observation of the limit has another dependent importance if further structural modification of the aromatic compound leads ultimately to the onset of reaction at a rate exceeding the observed encounter rate then a new electrophile must have become operative, and reactivities established above the encounter rate cannot properly be compared with those measured below it. [Pg.125]

Sonochemistry is also proving to have important applications with polymeric materials. Substantial work has been accomplished in the sonochemical initiation of polymerisation and in the modification of polymers after synthesis (3,5). The use of sonolysis to create radicals which function as radical initiators has been well explored. Similarly the use of sonochemicaHy prepared radicals and other reactive species to modify the surface properties of polymers is being developed, particularly by G. Price. Other effects of ultrasound on long chain polymers tend to be mechanical cleavage, which produces relatively uniform size distributions of shorter chain lengths. [Pg.263]

Chain-Growth Associative Thickeners. Preparation of hydrophobically modified, water-soluble polymer in aqueous media by a chain-growth mechanism presents a unique challenge in that the hydrophobically modified monomers are surface active and form micelles (50). Although the initiation and propagation occurs primarily in the aqueous phase, when the propagating radical enters the micelle the hydrophobically modified monomers then polymerize in blocks. In addition, the hydrophobically modified monomer possesses a different reactivity ratio (42) than the unmodified monomer, and the composition of the polymer chain therefore varies considerably with conversion (57). The most extensively studied monomer of this class has been acrylamide, but there have been others such as the modification of PVAlc. Pyridine (58) was one of the first chain-growth polymers to be hydrophobically modified. This modification is a post-polymerization alkylation reaction and produces a random distribution of hydrophobic units. [Pg.320]

Successful />Xylylene VDP Monomers. Within the limits mentioned above, it is frequentiy possible, and often desirable, to modify the /5-xylylene monomer by attaching to it certain substituents. Limitations on such modifications He ia three areas reactivity, performance ia the coater, and cost. [Pg.429]

Thus, except for electron-withdrawiag or bulky substituents, at least from the standpoiat of reactivity toward polymerization, modification by most other substituents is possible. [Pg.429]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

Most commercial processes involve copolymerization of ethylene with the acid comonomer followed by partial neutralization, using appropriate metal compounds. The copolymerization step is best carried out in a weU-stirred autoclave with continuous feeds of all ingredients and the free-radical initiator, under substantially constant environment conditions (22—24). Owing to the relatively high reactivity of the acid comonomer, it is desirable to provide rapid end-over-end mixing, and the comonomer content of the feed is much lower than that of the copolymer product. Temperatures of 150—280°C and pressures well in excess of 100 MPa (1000 atm) are maintained. Modifications on the basic process described above have been described (25,26). When specific properties such as increased stiffness are required, nonrandom copolymers may be preferred. An additional comonomer, however, may be introduced to decrease crystallinity (10,27). [Pg.408]

Substitution Reactions on Side Chains. Because the benzyl carbon is the most reactive site on the propanoid side chain, many substitution reactions occur at this position. Typically, substitution reactions occur by attack of a nucleophilic reagent on a benzyl carbon present in the form of a carbonium ion or a methine group in a quinonemethide stmeture. In a reversal of the ether cleavage reactions described, benzyl alcohols and ethers may be transformed to alkyl or aryl ethers by acid-catalyzed etherifications or transetherifications with alcohol or phenol. The conversion of a benzyl alcohol or ether to a sulfonic acid group is among the most important side chain modification reactions because it is essential to the solubilization of lignin in the sulfite pulping process (17). [Pg.139]

The aromatic ring of a phenoxy anion is the site of electrophilic addition, eg, in methylolation with formaldehyde (qv). The phenoxy anion is highly reactive to many oxidants such as oxygen, hydrogen peroxide, ozone, and peroxyacetic acid. Many of the chemical modification reactions of lignin utilizing its aromatic and phenoHc nature have been reviewed elsewhere (53). [Pg.143]

The use of sofid supports in conjunction with permanganate reactions leads to modification of the reactivity and selectivity of the oxidant. The use of an inert support, such as bentonite (see Clays), copper sulfate pentahydrate, molecular sieves (qv) (151), or sifica, results in an oxidant that does not react with alkenes, but can be used, for example, to convert alcohols to ketones (152). A sofid supported permanganate reagent, composed of copper sulfate pentahydrate and potassium permanganate (153), has been shown to readily convert secondary alcohols into ketones under mild conditions, and in contrast to traditional permanganate reactivity, the reagent does not react with double bonds (154). [Pg.522]

Besides the amorphous red P which is a commercial product, there are perhaps five other crystalline or poorly crystalline red modifications that are not produced commercially. These include a triclinic, an orthorhombic, a high temperature form, and two poorly crystalline forms. Red phosphoms varieties are rather stable in air and are of lower reactivity than white phosphoms. [Pg.348]

Several aHotropes of black phosphoms have also been reported (2). These include one amorphous and three crystalline modifications. At increasing pressures and temperatures reaching above 1200 MPa (12 kbar) and several hundred degrees, a series of black phosphoms modifications are formed that are characterized by even higher densities (2.70 g/cm ). These include orthorhombic, rhombohedral, and cubic varieties. The black forms have lower reactivity and solubiUty than red phosphoms. [Pg.348]

Results obtained at high temperatures indicate that the solubihties of the crystalline modifications of sihca are in the order tridymite > cristobahte > quartz, an order that parallels to some extent the chemical reactivity of these forms. Lower values for solubihty of crystalline as compared to amorphous sihca are consistent with the free-energy differences between them. [Pg.471]


See other pages where Reactive modifications is mentioned: [Pg.611]    [Pg.272]    [Pg.26]    [Pg.611]    [Pg.272]    [Pg.26]    [Pg.216]    [Pg.264]    [Pg.209]    [Pg.203]    [Pg.3]    [Pg.14]    [Pg.2]    [Pg.124]    [Pg.321]    [Pg.81]    [Pg.282]    [Pg.353]    [Pg.558]    [Pg.253]    [Pg.285]    [Pg.362]    [Pg.533]    [Pg.141]    [Pg.266]    [Pg.137]    [Pg.42]    [Pg.157]    [Pg.211]    [Pg.16]    [Pg.13]    [Pg.340]    [Pg.390]   
See also in sourсe #XX -- [ Pg.343 , Pg.344 ]




SEARCH



© 2024 chempedia.info