Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Back reactions, electron-transfer

In comparison, the level of detail in the understanding of radical ion reaction mechanisms is much lower for a number of reasons. Due to the inherently complex nature of the electron transfer-chemical reaction-electron transfer (ECE) mechanism, measurement of substituent, solvent and isotope effects will usually provide a combination of effects on all the steps involved. Introducing a donor substituent on a substrate will, for example, not only change the relative stability of the transition structures and intermediates with localized charges, but will also affect the rate constant of electron transfer and self-exchange between two substrates as well as the rate of back electron transfer. [Pg.99]

There are two possible excited state interfacial electron transfer processes that can occur from a molecular excited state, S, created at a metal surface (a) the metal accepts an electron from S to form S+ or (b) the metal donates an electron to S to form S . Neither of these processes has been directly observed. The two processes would be competitive and unless there is some preference, no net charge will cross the interface. In order to obtain a steady-state photoelectrochemical response, back interfacial electron transfer reactions of S+ (or S ) to yield ground-state products must also be eliminated. Energy transfer from an excited sensitizer to the metal is thermodynamically favorable and allowed by both Forster and Dexter mechanisms [20, 21]. There exists a theoretical [20] and experimental [21] literature describing energy transfer quenching of molecular excited states by metals. How-... [Pg.2733]

Double potential steps are usefiil to investigate the kinetics of homogeneous chemical reactions following electron transfer. In this case, after the first step—raising to a potential where the reduction of O to occurs under diffrision control—the potential is stepped back after a period i, to a value where tlie reduction of O is mass-transport controlled. The two transients can then be compared and tlie kinetic infomiation obtained by lookmg at the ratio of... [Pg.1929]

Peroxyoxalate chemiluminescence is the most efficient nonenzymatic chemiluminescent reaction known. Quantum efficiencies as high as 22—27% have been reported for oxalate esters prepared from 2,4,6-trichlorophenol, 2,4-dinitrophenol, and 3-trif1uoromethy1-4-nitropheno1 (6,76,77) with the duorescers mbrene [517-51-1] (78,79) or 5,12-bis(phenylethynyl)naphthacene [18826-29-4] (79). For most reactions, however, a quantum efficiency of 4% or less is more common with many in the range of lO " to 10 ein/mol (80). The inefficiency in the chemiexcitation process undoubtedly arises from the transfer of energy of the activated peroxyoxalate to the duorescer. The inefficiency in the CIEEL sequence derives from multiple side reactions available to the reactive intermediates in competition with the excited state producing back-electron transfer process. [Pg.267]

The mitochondrial complex that carries out ATP synthesis is called ATP synthase or sometimes FjFo-ATPase (for the reverse reaction it catalyzes). ATP synthase was observed in early electron micrographs of submitochondrial particles (prepared by sonication of inner membrane preparations) as round, 8.5-nm-diameter projections or particles on the inner membrane (Figure 21.23). In micrographs of native mitochondria, the projections appear on the matrixfacing surface of the inner membrane. Mild agitation removes the particles from isolated membrane preparations, and the isolated spherical particles catalyze ATP hydrolysis, the reverse reaction of the ATP synthase. Stripped of these particles, the membranes can still carry out electron transfer but cannot synthesize ATP. In one of the first reconstitution experiments with membrane proteins, Efraim Racker showed that adding the particles back to stripped membranes restored electron transfer-dependent ATP synthesis. [Pg.694]

Since the electrostatic potential sharply decreases with increasing distance from the polyelectrolyte cylinder, the degree of reactivity modification by functional groups fixed to the polyion is strongly dependent on the distance from the cylinder surface. Considerable electrostatic potential effects on the photoinduced forward and thermal back electron transfer reactions, which will be discussed in the following chapters, can be attributed to the functional chromophore groups directly attached to the polyelectrolyte back-bone through covalent bonds. [Pg.62]

For systems such as these, which consist of electron transfer quenching and back electron transfer, it is in general possible to determine the rates both of quenching and of the back reaction. In addition to these aspects of excited state chemistry, one can make another use of such systems. They can be used to synthesize other reactive molecules worthy of study in their own right. The quenching reaction produces new and likely reactive species. They are Ru(bpy)3+ and Ru(bpy)j in the respective cases just shown. One can have a prospective reagent for one of these ions in the solution and thereby develop a lengthy and informative series of kinetic data for the transient. [Pg.266]

A third factor to be considered in this triangular competition (internal deactivation, back electron transfer, chemical reaction) is the possibility of an unfavored chemical reaction followed by the initiation of a long chain39,40. [Pg.1069]

Acetylchloride is a trapping agent that allows the reaction to go completion, transforming the product into a less oxidizable compound.The results of other reactions between indole (57) and substituted cyclohexa-1,3-dienes show that the photo-induced Diels-Alder reaction is almost completely regioselective. In the absence of 59 the cycloaddition did not occur the presence of [2+2] adducts was never detected. Experimental data support the mechanism illustrated in Scheme 4.14. The intermediate 57a, originated from bond formation between the indole cation radical and 58, undergoes a back-electron transfer to form the adduct 60 trapped by acetyl chloride. [Pg.165]

As a rule, high quantum yields for two-electron transfer reactions are expected when the mechanism is one-electron/two-hole or two-electron/one-hole. In the cases of twQ-electron/two-hole or one-electron/one-hole efficient back reactions of the intermediates on the colloidal particles or in solution, respectively, will lead to a low yield of the final products. [Pg.142]

Photoinduced ET at liquid-liquid interfaces has been widely recognized as a model system for natural photosynthesis and heterogeneous photocatalysis [114-119]. One of the key aspects of photochemical reactions in these systems is that the efficiency of product separation can be enhanced by differences in solvation energy, diminishing the probability of a back electron-transfer process (see Fig. 11). For instance, Brugger and Gratzel reported that the efficiency of the photoreduction of the amphiphilic methyl viologen by Ru(bpy)3+ is effectively enhanced in the presence of cationic micelles formed by cetyltrimethylammonium chloride [120]. Flash photolysis studies indicated that while the kinetics of the photoinduced reaction,... [Pg.211]

Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)... Fig. 1 Schematic mechanism for the long-distance oxidation of DNA. Irradiation of the anthraquinone (AQ) and intersystem crossing (ISC) forms the triplet excited state (AQ 3), which is the species that accepts an electron from a DNA base (B) and leads to products. Electron transfer to the singlet excited state of the anthraquinone (AQ 1) leads only to back electron transfer. The anthraquinone radical anion (AQ ) formed in the electron transfer reaction is consumed by reaction with oxygen, which is reduced to superoxide. This process leaves a base radical cation (B+-, a hole ) in the DNA with no partner for annihilation, which provides time for it to hop through the DNA until it is trapped by water (usually at a GG step) to form a product, 7,8-dihydro-8-oxoguanine (8-OxoG)...
On the other hand, oxidation of a DNA base by a triplet state of the an-thraquinone (AQ5"3) generates a contact ion pair in an overall triplet state, and back electron transfer from this species to form ground states is prohibited by spin conservation rules. Consequently, the lifetime of the triplet radical ion pair is long enough to permit the bimolecular reaction of AQ- with 02 to form superoxide (02 ) and regenerate the anthraquinone. [Pg.152]


See other pages where Back reactions, electron-transfer is mentioned: [Pg.195]    [Pg.178]    [Pg.1922]    [Pg.1926]    [Pg.1935]    [Pg.390]    [Pg.390]    [Pg.323]    [Pg.239]    [Pg.240]    [Pg.572]    [Pg.722]    [Pg.724]    [Pg.232]    [Pg.4]    [Pg.271]    [Pg.1069]    [Pg.1072]    [Pg.1076]    [Pg.267]    [Pg.61]    [Pg.1069]    [Pg.1072]    [Pg.1076]    [Pg.120]    [Pg.641]    [Pg.212]    [Pg.213]    [Pg.408]    [Pg.410]    [Pg.671]    [Pg.49]    [Pg.87]    [Pg.117]    [Pg.152]   


SEARCH



Back electron transfer

Back reaction

Back reactions, electron-transfer approximation

Back transfer

© 2024 chempedia.info