Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron spin echo envelope modulation double-resonance techniques

Double-resonance spectroscopy involves the use of two different sources of radiation. In the context of EPR, these usually are a microwave and a radiowave or (less common) a microwave and another microwave. The two combinations were originally called ENDOR (electron nuclear double resonance) and ELDOR (electron electron double resonance), but the development of many variations on this theme has led to a wide spectrum of derived techniques and associated acronyms, such as ESEEM (electron spin echo envelope modulation), which is a pulsed variant of ENDOR, or DEER (double electron electron spin resonance), which is a pulsed variant of ELDOR. The basic principle involves the saturation (partially or wholly) of an EPR absorption and the subsequent transfer of spin energy to a different absorption by means of the second radiation, leading to the detection of the difference signal. The requirement of saturability implies operation at close to liquid helium, or even lower, temperatures, which, combined with long experimentation times, produces a... [Pg.226]

Since the phenoxyls possess an S = ground state, they have been carefully studied by electron paramagnetic spectroscopy (EPR) and related techniques such as electron nuclear double resonance (ENDOR), and electron spin-echo envelope modulation (ESEEM). These powerful and very sensitive techniques are ideally suited to study the occurrence of tyrosyl radicals in a protein matrix (1, 27-30). Careful analysis of the experimental data (hyperfine coupling constants) provides experimental spin densities at a high level of precision and, in addition, the positions of these tyrosyls relative to other neighboring groups in the protein matrix. [Pg.155]

Electron nuclear double resonance (ENDOR) and electron spin-echo envelope modulation (ESEEM) are two of a variety of pulsed EPR techniques that are used to study paramagnetic metal centers in metalloenzymes. The techniques are discussed in Chapter 4 of reference la and will not be discussed in any detail here. The techniques can define electron-nuclear hyperfine interactions too small to be resolved within the natural width of the EPR line. For instance, as a paramagnetic transition metal center in a metalloprotein interacts with magnetic nuclei such as H, H, P, or these... [Pg.129]

A prototypical example of a molecular probe used extensively to study the mineral adsorbent-solution interface is the ESR spin-probe, Cu2+ (Sposito, 1993), whose spectroscopic properties are sensitive to changes in coordination environment. Since water does not interfere significantly with Cu11 ESR spectra, they may be recorded in situ for colloidal suspensions. Detailed, molecular-level information about coordination and orientation of both inner- and outer-sphere Cu2+ surface complexes has resulted from ESR studies of both phyllosilicates and metal oxyhydroxides. In addition, ESR techniques have been combined with closely related spectroscopic methods, like electron-spin-echo envelope modulation (ESEEM) and electron-nuclear double resonance (ENDOR), to provide complementary information about transition metal ion behaviour at mineral surfaces (Sposito, 1993). The level of sophistication and sensitivity of these kinds of surface speciation studies is increasing continually, such that the heterogeneous colloidal particles in soils can be investigated ever more accurately. [Pg.248]

Valuable spectroscopic studies on the dithiolene chelated to Mo in various enzymes have been enhanced by the knowledge of the structure from X-ray diffraction. Plagued by interference of prosthetic groups—heme, flavin, iron-sulfur clusters—the majority of information has been gleaned from the DMSO reductase system. The spectroscopic tools of X-ray absorption spectroscopy (XAS), electronic ultraviolet/visible (UV/vis) spectroscopy, resonance Raman (RR), MCD, and various electron paramagnetic resonance techniques [EPR, electron spin echo envelope modulation (ESEEM), and electron nuclear double resonance (ENDOR)] have been particularly effective probes of the metal site. Of these, only MCD and RR have detected features attributable to the dithiolene unit. Selected results from a variety of studies are presented below, chosen because their focus is the Mo-dithiolene unit and organized according to method rather than to enzyme or type of active site. [Pg.515]

ESR-related spectroscopies that hold the potential to overcome some resolution limitations and yield more information than the classical ESR approach about the chemical environment of paramagnetic metal ions are the electron—nuclear double resonance (ENDOR) (Kevan and Kispert, 1976) and electron-spin echo envelope modulation (ESEEM) (Kevan and Schwartz, 1979) spectroscopies. Either ENDOR or ESEEM represents by principle a useful tool in extending resolution of the ESR experiment. However, the sensitivity of ENDOR and ESEEM is much lower than that of ESR, and interpretation of ENDOR and ESEEM spectra is not a simple matter, especially if ligands are not well characterized, as is the case for HSs. Both ENDOR and ESEEM techniques have not yet been applied to strictly metal-HS complexes, but the sensitivity and ease of carrying out experiments are improving rapidly, so major scientific activity may be anticipated to occur in this area of ESR spectroscopy. [Pg.146]

Electron spin resonance (ESR) spectroscopy is a very powerful and sensitive method for the characterization of the electronic structures of materials with unpaired electrons. There is a variety of ESR techniques, each with its own advantages. In continuous wave ESR (CW-ESR), the sample is subjected to a continuous beam of microwave irradiation of fixed frequency and the magnetic field is swept. Different microwave frequencies may be used and they are denoted as S-band (3.5 GHz),X-band (9.25 GHz), K-band (20 GHz), Q-band (35 GHz) and W-band (95 GHz). Other techniques, such as electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, record in essence the NMR spectra of paramagnetic species. [Pg.296]

Not all the information can be obtained by the basic CW experiment that is considered by many chemists as all there is to EPR. Elucidating geometric structure or small spin densities requires the separation of small hyperfine couplings or dipole-dipole couplings between electron spins from larger interactions. This can be achieved by double resonance experiments, such as electron nuclear double resonance (ENDOR) [8,9] and electron electron double resonance (ELDOR) spectroscopy and further pulse-EPR techniques [10] such as electron spin echo envelope modulation (ESEEM). Pulse-EPR techniques may also provide more information on dynamic processes than simple CW experiments and may access longer time scales. [Pg.220]

ENDOR techniques work rather poorly if the hyperfine interaction and the nuclear Zeeman interaction are of the same order of magnitude. In this situation, electron and nuclear spin states are mixed and formally forbidden transitions, in which both the electron and nuclear spin flip, become partially allowed. Oscillations with the frequency of nuclear transitions then show up in simple electron spin echo experiments. Although such electron spin echo envelope modulation (ESEEM) experiments are not strictly double-resonance techniques, they are treated in this chapter (Section 5) because of their close relation and complementarity to ENDOR. The ESEEM experiments allow for extensive manipulations of the nuclear spins and thus for a more detailed separation of interactions. From the multitude of such experiments, we select here combination-peak ESEEM and hyperfine sublevel correlation spectroscopy (HYSCORE), which can separate the anisotropic dipole-dipole part of the hyperfine coupling from the isotropic Fermi contact interaction. [Pg.27]

Electron Spin Echo Envelope Modulation (ESEEM) and pulse Electron Nuclear Double Resonance (ENDOR) experiments are considered to be two cornerstones of pulse EPR spectroscopy. These techniques are typically used to obtain the static spin Hamiltonian parameters of powders, frozen solutions, and single crystals. The development of new methods based on these two effects is mainly driven by the need for higher resolution, and therefore, a more accurate estimation of the magnetic parameters. In this chapter, we describe the inner workings of ESEEM and pulse ENDOR experiments as well as the latest developments aimed at resolution and sensitivity enhancement. The advantages and limitations of these techniques are demonstrated through examples found in the literature, with an emphasis on systems of biological relevance. [Pg.13]

The pulse EPR methods discussed here for measuring nuclear transition frequencies can be classified into two categories. The first involves using electron nuclear double resonance (ENDOR) techniques where flie signal arises from the excitation of EPR and NMR transitions by microwave (m.w.) and radiofrequency (r.f) irradiation, respectively. In the second class of experiments, based on flic electron spin echo envelope modulation (ESEEM) effect, flic nuclear transition frequencies are indirectly measured by the creation and detection of electron or nuclear coherences using only m.w. pulses. No r.f irradiation is required. ENDOR and ESEEM spectra often give complementary information. ENDOR experiments are especially suited for measuring nuclear frequencies above approximately 5 MHz, and are often most sensitive when the hyperfine interaction in not very anisotropic. Conversely, anisotropic interactions are required for an ESEEM effect, and the technique can easily measure low nuclear frequencies. [Pg.14]


See other pages where Electron spin echo envelope modulation double-resonance techniques is mentioned: [Pg.2779]    [Pg.2778]    [Pg.93]    [Pg.109]    [Pg.243]    [Pg.289]    [Pg.116]    [Pg.245]    [Pg.146]    [Pg.146]    [Pg.5]    [Pg.2299]    [Pg.2]    [Pg.196]    [Pg.121]    [Pg.374]    [Pg.2298]    [Pg.5]    [Pg.89]    [Pg.49]    [Pg.228]    [Pg.278]    [Pg.16]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Double resonance

Double-resonance technique

ECHO technique

Echo envelope

Echo envelope modulation

Echo modulation

Electron resonance technique

Electron spin echo

Electron spin echo envelope modulation resonance

Electron spin echo modulation

Electron spin-echo envelope modulation

Electron spin-echo resonance

Electron spin-echo technique

Electron techniques

Electronic (Resonance) Techniques

Envelope modulation

Modulated Spin-Echo

Modulated echoes

Modulated techniques

Modulation Spin-Echo)

Modulation double

Spin echo envelope modulation

Spin echo technique

© 2024 chempedia.info