Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron spin echo envelope modulation resonance

Riedel A, S Fetzner, M Rampp, F Lingens, U Liebl, J-L Zrmmermann, W Nitschke (1995) EPR, electron spin echo envelope modulation, and electron nuclear double resonance studies of the 2Ee-2S centers of the 2-halobenzoate 1,2-dioxygenase from Burkholderia (Pseudomonas) cepacia 2CBS. J Biol Chem 270 30869-30873. [Pg.293]

G.R. Eaton and S.S. Eaton, Electron-nuclear double resonance spectroscopy and electron spin echo envelope modulation spectroscopy, Comprehensive Coordination Chemistry II, Elsevier, Boston, 2004, 49. [Pg.164]

Double-resonance spectroscopy involves the use of two different sources of radiation. In the context of EPR, these usually are a microwave and a radiowave or (less common) a microwave and another microwave. The two combinations were originally called ENDOR (electron nuclear double resonance) and ELDOR (electron electron double resonance), but the development of many variations on this theme has led to a wide spectrum of derived techniques and associated acronyms, such as ESEEM (electron spin echo envelope modulation), which is a pulsed variant of ENDOR, or DEER (double electron electron spin resonance), which is a pulsed variant of ELDOR. The basic principle involves the saturation (partially or wholly) of an EPR absorption and the subsequent transfer of spin energy to a different absorption by means of the second radiation, leading to the detection of the difference signal. The requirement of saturability implies operation at close to liquid helium, or even lower, temperatures, which, combined with long experimentation times, produces a... [Pg.226]

Since the phenoxyls possess an S = ground state, they have been carefully studied by electron paramagnetic spectroscopy (EPR) and related techniques such as electron nuclear double resonance (ENDOR), and electron spin-echo envelope modulation (ESEEM). These powerful and very sensitive techniques are ideally suited to study the occurrence of tyrosyl radicals in a protein matrix (1, 27-30). Careful analysis of the experimental data (hyperfine coupling constants) provides experimental spin densities at a high level of precision and, in addition, the positions of these tyrosyls relative to other neighboring groups in the protein matrix. [Pg.155]

Electron Nuclear Double Resonance (ENDOR) and Electron Spin-Echo Envelope Modulation (ESEEM)... [Pg.129]

Electron nuclear double resonance (ENDOR) and electron spin-echo envelope modulation (ESEEM) are two of a variety of pulsed EPR techniques that are used to study paramagnetic metal centers in metalloenzymes. The techniques are discussed in Chapter 4 of reference la and will not be discussed in any detail here. The techniques can define electron-nuclear hyperfine interactions too small to be resolved within the natural width of the EPR line. For instance, as a paramagnetic transition metal center in a metalloprotein interacts with magnetic nuclei such as H, H, P, or these... [Pg.129]

EPR, Electron paramagnetic resonance ESEEM, Electron spin-echo envelope modulation EXAFS, Extended X-ray absorption fine structure... [Pg.329]

A prototypical example of a molecular probe used extensively to study the mineral adsorbent-solution interface is the ESR spin-probe, Cu2+ (Sposito, 1993), whose spectroscopic properties are sensitive to changes in coordination environment. Since water does not interfere significantly with Cu11 ESR spectra, they may be recorded in situ for colloidal suspensions. Detailed, molecular-level information about coordination and orientation of both inner- and outer-sphere Cu2+ surface complexes has resulted from ESR studies of both phyllosilicates and metal oxyhydroxides. In addition, ESR techniques have been combined with closely related spectroscopic methods, like electron-spin-echo envelope modulation (ESEEM) and electron-nuclear double resonance (ENDOR), to provide complementary information about transition metal ion behaviour at mineral surfaces (Sposito, 1993). The level of sophistication and sensitivity of these kinds of surface speciation studies is increasing continually, such that the heterogeneous colloidal particles in soils can be investigated ever more accurately. [Pg.248]

Aznar CP, Britt RD. Simulations of the 111 electron spin echo-electron nuclear double resonance and 2H electron spin echo envelope modulation spectra of exchangeable hydrogen nuclei coupled to the S2-state photosystem II manganese cluster. Phil Trans R Soc B. 2002 357(1426) 1359-66. [Pg.217]

Valuable spectroscopic studies on the dithiolene chelated to Mo in various enzymes have been enhanced by the knowledge of the structure from X-ray diffraction. Plagued by interference of prosthetic groups—heme, flavin, iron-sulfur clusters—the majority of information has been gleaned from the DMSO reductase system. The spectroscopic tools of X-ray absorption spectroscopy (XAS), electronic ultraviolet/visible (UV/vis) spectroscopy, resonance Raman (RR), MCD, and various electron paramagnetic resonance techniques [EPR, electron spin echo envelope modulation (ESEEM), and electron nuclear double resonance (ENDOR)] have been particularly effective probes of the metal site. Of these, only MCD and RR have detected features attributable to the dithiolene unit. Selected results from a variety of studies are presented below, chosen because their focus is the Mo-dithiolene unit and organized according to method rather than to enzyme or type of active site. [Pg.515]

ESEEM. See Electron spin-echo envelope modulation techniques ESR. See Electron spin resonance Ethylenediamine, 290 Ethylenediaminetetraacetic acid (EDTA), 333, 337, 356-358,380-382,391,... [Pg.519]

PSII = Photosystem II WOC = Water-oxidizing complex OEC = Oxygen-evolving complex (B)RC = (Bacterial) Reaction Center Chi = Chlorophyll Bchl = Bacteriochloro-phyll XRD = X-ray diffraction EPR = Electron paramagnetic resonance EXAFS = Extended X-ray absorption fine stmctnre ENDOR = Electron-nuclear double resonance ESEEM = Electron spin echo envelope modulation (Tyr = Yz) = DlTyrl61 ATP = Adenosine Triphosphate KIE = Kinetic isotope effect UV = Ultraviolet (FT-)IR = (Fourier Transform) InfraRed. [Pg.2537]

CEMS = conversion electron Mossbauer spectroscopy DFT = density functional theory EFG = electric field gradient EPR = electron paramagnetic resonance ESEEM = electron spin echo envelope modulation spectroscopy GTO = Gaussian-type orbitals hTH = human tyrosine hydroxylase MIMOS = miniaturized mossbauer spectrometer NFS = nuclear forward scattering NMR = nuclear magnetic resonance RFQ = rapid freeze quench SAM = S -adenosyl-L-methionine SCC = self-consistent charge STOs = slater-type orbitals TMP = tetramesitylporphyrin XAS = X-ray absorption spectroscopy. [Pg.2841]

Electron Paramagnetic Resonance (EPR) Spectroscopy, Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy Electron-Nuclear Double Resonance (ENDOR) Spectroscopy Nuclear Magnetic Resonance (NMR) Spectroscopy of Inorganic/Organometallic Molecules. [Pg.6227]

DPPH = 2,2-diphenyl-1-picrylhydrazyl ENDOR= electron-nuclear double resonance EPR = electron paramagnetic resonance ESE = electron spin echoes ESEEM = electron spin echo envelope modulation EFT = fast fourier transformations FWHM = fidl width at half maximum HYSCORE = hyperfine sublevel correlation nqi = nuclear quadrupole interaction TauD = taurme/aKG dioxygenase TWTA = traveling wave tube amphfier ZFS = zero field sphtting. [Pg.6511]


See other pages where Electron spin echo envelope modulation resonance is mentioned: [Pg.151]    [Pg.63]    [Pg.19]    [Pg.93]    [Pg.109]    [Pg.24]    [Pg.133]    [Pg.243]    [Pg.289]    [Pg.116]    [Pg.245]    [Pg.579]    [Pg.195]    [Pg.371]    [Pg.146]    [Pg.146]    [Pg.83]    [Pg.5]    [Pg.265]    [Pg.125]    [Pg.2299]    [Pg.2299]    [Pg.2779]    [Pg.2844]    [Pg.3097]    [Pg.6492]    [Pg.6564]    [Pg.6574]   
See also in sourсe #XX -- [ Pg.17 , Pg.18 ]




SEARCH



Echo envelope

Echo envelope modulation

Echo modulation

Electron spin echo

Electron spin echo envelope modulation double-resonance techniques

Electron spin echo modulation

Electron spin-echo envelope modulation

Electron spin-echo resonance

Envelope modulation

Modulated Spin-Echo

Modulated echoes

Modulation Spin-Echo)

Spin echo envelope modulation

© 2024 chempedia.info