Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron microscopy molecular surfaces

A completely new method of determining siufaces arises from the enormous developments in electron microscopy. In contrast to the above-mentioned methods where the surfaces were calculated, molecular surfaces can be determined experimentally through new technologies such as electron cryomicroscopy [188]. Here, the molecular surface is limited by the resolution of the experimental instruments. Current methods can reach resolutions down to about 10 A, which allows the visualization of protein structures and secondary structure elements [189]. The advantage of this method is that it can be apphed to derive molecular structures of maaomolecules in the native state. [Pg.129]

Much of the difficulty in demonstrating the mechanism of breakaway in a particular case arises from the thinness of the reaction zone and its location at the metal-oxide interface. Workers must consider (a) whether the oxide is cracked or merely recrystallised (b) whether the oxide now results from direct molecular reaction, or whether a barrier layer remains (c) whether the inception of a side reaction (e.g. 2CO - COj + C)" caused failure or (d) whether a new transport process, chemical transport or volatilisation, has become possible. In developing these mechanisms both arguments and experimental technique require considerable sophistication. As a few examples one may cite the use of density and specific surface-area measurements as routine of porosimetry by a variety of methods of optical microscopy, electron microscopy and X-ray diffraction at reaction temperature of tracer, electric field and stress measurements. Excellent metallographic sectioning is taken for granted in this field of research. [Pg.282]

Usually, the molecular strands are coiled in the glassy polymer. They become stretched when a crack arrives and starts to build up the deformation zone. Presumably, strain softened polymer molecules from the bulk material are drawn into the deformation zone. This microscopic surface drawing mechanism may be considered to be analogous to that observed in lateral craze growth or in necking of thermoplastics. Chan, Donald and Kramer [87] observed by transmission electron microscopy how polymer chains were drawn into the fibrils at the craze-matrix-interface in PS films [92]. One explanation, the hypothesis of devitrification by Gent and Thomas [89] was set forth as early as 1972. [Pg.345]

In the transmission electron microscopy (TEM) images, the starch nanoplatelets (SNPs) are believed to aggregate as a result of hydrogen bond interactions due to the surface hydroxyl groups [13] (Fig. lA). Blocking these interactions by relatively large molecular weight molecules obviously improves the individualization of the nanoparticles. The acetylated starch and cellulose nanoparticles (SAcNPs and CelAcNPs) appeared more individualized and monodispersed than their unmodified counterparts with a size of about 50 nm (Fig. IB C). [Pg.124]

The major gaseous components were analyzed by a gas chromatograph equipped with a TCD and a molecular sieve 13X column. The specific surface areas of carbon produced were measured by the BET method(ASAP 2010, Micromeritics). The morphology and particle size of the formed carbon were investigated by the scanning electron microscopy(S-4200, Hitachi... [Pg.421]

Phospholipids, which are one of the main structural components of the membrane, are present primarily as bilayers, as shown by molecular spectroscopy, electron microscopy and membrane transport studies (see Section 6.4.4). Phospholipid mobility in the membrane is limited. Rotational and vibrational motion is very rapid (the amplitude of the vibration of the alkyl chains increases with increasing distance from the polar head). Lateral diffusion is also fast (in the direction parallel to the membrane surface). In contrast, transport of the phospholipid from one side of the membrane to the other (flip-flop) is very slow. These properties are typical for the liquid-crystal type of membranes, characterized chiefly by ordering along a single coordinate. When decreasing the temperature (passing the transition or Kraft point, characteristic for various phospholipids), the liquid-crystalline bilayer is converted into the crystalline (gel) structure, where movement in the plane is impossible. [Pg.449]

Transition metal oxides, rare earth oxides and various metal complexes deposited on their surface are typical phases of DeNO catalysts that lead to redox properties. For each of these phases, complementary tools exist for a proper characterization of the metal coordination number, oxidation state or nuclearity. Among all the techniques such as EPR [80], UV-vis [81] and IR, Raman, transmission electron microscopy (TEM), X-ray absorption spectroscopy (XAS) and NMR, recently reviewed [82] for their application in the study of supported molecular metal complexes, Raman and IR spectroscopies are the only ones we will focus on. The major advantages offered by these spectroscopic techniques are that (1) they can detect XRD inactive amorphous surface metal oxide phases as well as crystalline nanophases and (2) they are able to collect information under various environmental conditions [83], We will describe their contributions to the study of both the support (oxide) and the deposited phase (metal complex). [Pg.112]

Myelin in situ has a water content of about 40%. The dry mass of both CNS and PNS myelin is characterized by a high proportion of lipid (70-85%) and, consequently, a low proportion of protein (15-30%). By comparison, most biological membranes have a higher ratio of proteins to lipids. The currently accepted view of membrane structure is that of a lipid bilayer with integral membrane proteins embedded in the bilayer and other extrinsic proteins attached to one surface or the other by weaker linkages. Proteins and lipids are asymmetrically distributed in this bilayer, with only partial asymmetry of the lipids. The proposed molecular architecture of the layered membranes of compact myelin fits such a concept (Fig. 4-11). Models of compact myelin are based on data from electron microscopy, immunostaining, X-ray diffraction, surface probes studies, structural abnormalities in mutant mice, correlations between structure and composition in various species, and predictions of protein structure from sequencing information [4]. [Pg.56]

A researcher in the field of heterogeneous catalysis, alongside the important studies of catalysts chemical properties (i.e., properties at a molecular level), inevitably encounters problems determining the catalyst structure at a supramolecular (textural) level. A powerful combination of physical and chemical methods (numerous variants x-ray diffraction (XRD), IR, nuclear magnetic resonance (NMR), XPS, EXAFS, ESR, Raman of Moessbauer spectroscopy, etc. and achievements of modem analytical chemistry) may be used to study the catalysts chemical and phase molecular structure. At the same time, characterizations of texture as a fairytale Cinderella fulfill the routine and very frequently senseless work, usually limited (obviously in our modem transcription) with electron microscopy, formal estimation of a surface area by a BET method, and eventually with porosimetry without any thorough insight. [Pg.258]

Fig. 4.4 Molecular model of (a) surface containing positive and negative curvature induced by a pentagon (red) and a heptagon (blue), respectively (b) molecular model of 5-7 defects (yellow) and a Thrower-Stone-Wales defect (green) [82] (c) high-resolution transmission electron microscopy (HRTEM) images of bond rotations V2 (555-777) divacancy, and (d) V2(5555-6-7777) divacancy within graphene scale bar is 1 nm [75]. Fig. 4.4 Molecular model of (a) surface containing positive and negative curvature induced by a pentagon (red) and a heptagon (blue), respectively (b) molecular model of 5-7 defects (yellow) and a Thrower-Stone-Wales defect (green) [82] (c) high-resolution transmission electron microscopy (HRTEM) images of bond rotations V2 (555-777) divacancy, and (d) V2(5555-6-7777) divacancy within graphene scale bar is 1 nm [75].
Mass spectrometers Molecular beam apparatus Ion sources Particle accelerators Electron microscopes Electron diffraction apparatus Vacuum spectographs Low-temperature research Production of thin films Surface physics Plasma research Nuclear fusion apparatus Space simulation Material research Preparations for electron microscopy... [Pg.61]


See other pages where Electron microscopy molecular surfaces is mentioned: [Pg.174]    [Pg.432]    [Pg.1361]    [Pg.1705]    [Pg.235]    [Pg.499]    [Pg.539]    [Pg.415]    [Pg.105]    [Pg.260]    [Pg.296]    [Pg.314]    [Pg.349]    [Pg.370]    [Pg.45]    [Pg.110]    [Pg.199]    [Pg.362]    [Pg.316]    [Pg.26]    [Pg.102]    [Pg.218]    [Pg.377]    [Pg.676]    [Pg.149]    [Pg.42]    [Pg.198]    [Pg.26]    [Pg.201]    [Pg.222]    [Pg.484]    [Pg.175]    [Pg.156]    [Pg.137]    [Pg.242]    [Pg.493]    [Pg.14]    [Pg.135]    [Pg.174]    [Pg.43]   
See also in sourсe #XX -- [ Pg.4 , Pg.242 , Pg.245 ]




SEARCH



Molecular surface

Surface electron microscopy

Surface electronic

Surface electrons

Surface microscopy

© 2024 chempedia.info