Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron in proteins

The transfer of electrons in proteins by a quantum mechanical tunnelling mechanism is now firmly established. Electron transfer within proteins... [Pg.30]

Particularly in the case of protein ET, it became clear that there must be a factor in eq.(15) which accounts for the dependence on distance between the two subsystems, for example two metal centres exchanging electrons in proteins. For this reason eq.(15) is supplemented by the factor k ... [Pg.16]

Sensitivity levels more typical of kinetic studies are of the order of lO molecules cm . A schematic diagram of an apparatus for kinetic LIF measurements is shown in figure C3.I.8. A limitation of this approach is that only relative concentrations are easily measured, in contrast to absorjDtion measurements, which yield absolute concentrations. Another important limitation is that not all molecules have measurable fluorescence, as radiationless transitions can be the dominant decay route for electronic excitation in polyatomic molecules. However, the latter situation can also be an advantage in complex molecules, such as proteins, where a lack of background fluorescence allow s the selective introduction of fluorescent chromophores as probes for kinetic studies. (Tryptophan is the only strongly fluorescent amino acid naturally present in proteins, for instance.)... [Pg.2958]

Figure C3.2.6. Zones associated witlr the distinctive decay of electronic coupling tlrrough a-helical against p-sheet stmctures in proteins. Points shown refer to specific rates in mtlrenium-modified proteins aird in tire photosyntlretic reaction centre. From Gray H B aird Wiirkler J R 1996 Electron trairsfer in proteins A . Rev. Biochem. 65 537. Figure C3.2.6. Zones associated witlr the distinctive decay of electronic coupling tlrrough a-helical against p-sheet stmctures in proteins. Points shown refer to specific rates in mtlrenium-modified proteins aird in tire photosyntlretic reaction centre. From Gray H B aird Wiirkler J R 1996 Electron trairsfer in proteins A . Rev. Biochem. 65 537.
The cross relation has proven valuable to estimate ET rates of interest from data tliat might be more readily available for individual reaction partners. Simple application of tire cross-relation is, of course, limited if tire electronic coupling interactions associated with tire self exchange processes are drastically different from tliose for tire cross reaction. This is a particular concern in protein/protein ET reactions where tire coupling may vary drastically as a function of docking geometry. [Pg.2984]

In light of tire tlieory presented above one can understand tliat tire rate of energy delivery to an acceptor site will be modified tlirough tire influence of nuclear motions on tire mutual orientations and distances between donors and acceptors. One aspect is tire fact tliat ultrafast excitation of tire donor pool can lead to collective motion in tire excited donor wavepacket on tire potential surface of tire excited electronic state. Anotlier type of collective nuclear motion, which can also contribute to such observations, relates to tire low-frequency vibrations of tire matrix stmcture in which tire chromophores are embedded, as for example a protein backbone. In tire latter case tire matrix vibration effectively causes a collective motion of tire chromophores togetlier, witliout direct involvement on tire wavepacket motions of individual cliromophores. For all such reasons, nuclear motions cannot in general be neglected. In tliis connection it is notable tliat observations in protein complexes of low-frequency modes in tlie... [Pg.3027]

Nobel-laureate Richard Feynman once said that the principles of physics do not preclude the possibility of maneuvering things atom by atom (260). Recent developments in the fields of physics, chemistry, and biology (briefly described in the previous sections) bear those words out. The invention and development of scanning probe microscopy has enabled the isolation and manipulation of individual atoms and molecules. Research in protein and nucleic acid stmcture have given rise to powerful tools in the estabUshment of rational synthetic protocols for the production of new medicinal dmgs, sensing elements, catalysts, and electronic materials. [Pg.211]

Both PSI and PSII are necessary for photosynthesis, but the systems do not operate in the implied temporal sequence. There is also considerable pooling of electrons in intermediates between the two photosystems, and the indicated photoacts seldom occur in unison. The terms PSI and PSII have come to represent two distinct, but interacting reaction centers in photosynthetic membranes (36,37) the two centers are considered in combination with the proteins and electron-transfer processes specific to the separate centers. [Pg.39]

Iron Sulfur Compounds. Many molecular compounds (18—20) are known in which iron is tetrahedraHy coordinated by a combination of thiolate and sulfide donors. Of the 10 or more stmcturaHy characterized classes of Fe—S compounds, the four shown in Figure 1 are known to occur in proteins. The mononuclear iron site REPLACE occurs in the one-iron bacterial electron-transfer protein mbredoxin. The [2Fe—2S] (10) and [4Fe—4S] (12) cubane stmctures are found in the 2-, 4-, and 8-iron ferredoxins, which are also electron-transfer proteins. The [3Fe—4S] voided cubane stmcture (11) has been found in some ferredoxins and in the inactive form of aconitase, the enzyme which catalyzes the stereospecific hydration—rehydration of citrate to isocitrate in the Krebs cycle. In addition, enzymes are known that contain either other types of iron sulfur clusters or iron sulfur clusters that include other metals. Examples include nitrogenase, which reduces N2 to NH at a MoFe Sg homocitrate cluster carbon monoxide dehydrogenase, which assembles acetyl-coenzyme A (acetyl-CoA) at a FeNiS site and hydrogenases, which catalyze the reversible reduction of protons to hydrogen gas. [Pg.442]

Cytochromes c (Cyt c) can be defined as electron- transfer proteins having one or several haem c groups, bound to the protein by one or, more commonly two, thioether bonds. Cyt c possesses a wide range of properties and function in a large number of different redox processes. [Pg.367]

Computer simulations of electron transfer proteins often entail a variety of calculation techniques electronic structure calculations, molecular mechanics, and electrostatic calculations. In this section, general considerations for calculations of metalloproteins are outlined in subsequent sections, details for studying specific redox properties are given. Quantum chemistry electronic structure calculations of the redox site are important in the calculation of the energetics of the redox site and in obtaining parameters and are discussed in Sections III.A and III.B. Both molecular mechanics and electrostatic calculations of the protein are important in understanding the outer shell energetics and are discussed in Section III.C, with a focus on molecular mechanics. [Pg.395]

Molecular mechanics and electrostatics calculations have both played an important role in studying electron transfer proteins. Molecular mechanics calculations of these proteins use the same techniques (molecular dynamics, energy minimization) as for other proteins, although special consideration must be made in simulation conditions. [Pg.398]

A Kuki, PG Wolynes. Electron tunneling paths in proteins. Science 236 1647-1652, 1987. T Ziegler. Approximate density functional theory as a practical tool m molecular energetics and dynamics. Chem Rev 91 651-667, 1991. [Pg.411]

Figure 18.11 Electron-density maps at different resolution show more detail at higher resolution, (a) At low resolution (5.0 A) individual groups of atoms are not resolved, and only the rodlike feature of an Figure 18.11 Electron-density maps at different resolution show more detail at higher resolution, (a) At low resolution (5.0 A) individual groups of atoms are not resolved, and only the rodlike feature of an <x helix can be deduced, (b) At medium resolution (3.0 A) the path of the polypeptide chain can be traced, and (c) at high resolution (1.5 A) individual atoms start to become resolved. Relevant parts of the protein chain (red) are superimposed on the electron densities (gray) The diagrams show one <x helix from a small protein, myohemerythrin. [Adapted from W.A. Hendrickson in Protein Engineering (eds. D.L. Oxender and C.F. Fox.), p. 11.
The three-dimensional structure of protein molecules can be experimentally determined by two different methods, x-ray crystallography and NMR. The interaction of x-rays with electrons in molecules arranged in a crystal is used to obtain an electron-density map of the molecule, which can be interpreted in terms of an atomic model. Recent technical advances, such as powerful computers including graphics work stations, electronic area detectors, and... [Pg.391]

Phenylalanine and tryptophan have side chains that incorporate aromatic rings, which are large and hydrophobic. The aromatic portion of tr-yptophan is bicyclic, which makes it larger than phenylalanine. Tryptophan also has a more electron-rich aromatic ring and is more polarizable than phenylalanine. Its role is more specialized, and it is less abundant in proteins than most of the other anino acids. [Pg.1113]

The electron transport protein, cytochrome c, found in the mitochondria of all eukaryotic organisms, provides the best-studied example of homology. The polypeptide chain of cytochrome c from most species contains slightly more than 100 amino acids and has a molecular weight of about 12.5 kD. Amino acid sequencing of cytochrome c from more than 40 different species has revealed that there are 28 positions in the polypeptide chain where the same amino acid residues are always found (Figure 5.27). These invariant residues apparently serve roles crucial to the biological function of this protein, and thus substitutions of other amino acids at these positions cannot be tolerated. [Pg.143]

Why has nature chosen this rather convoluted path for electrons in Complex 111 First of all. Complex 111 takes up two protons on the matrix side of the inner membrane and releases four protons on the cytoplasmic side for each pair of electrons that passes through the Q cycle. The apparent imbalance of two protons in ior four protons out is offset by proton translocations in Complex rV, the cytochrome oxidase complex. The other significant feature of this mechanism is that it offers a convenient way for a two-electron carrier, UQHg, to interact with the bj and bfj hemes, the Rieske protein Fe-S cluster, and cytochrome C, all of which are one-electron carriers. [Pg.688]

What molecular architecture couples the absorption of light energy to rapid electron-transfer events, in turn coupling these e transfers to proton translocations so that ATP synthesis is possible Part of the answer to this question lies in the membrane-associated nature of the photosystems. Membrane proteins have been difficult to study due to their insolubility in the usual aqueous solvents employed in protein biochemistry. A major breakthrough occurred in 1984 when Johann Deisenhofer, Hartmut Michel, and Robert Huber reported the first X-ray crystallographic analysis of a membrane protein. To the great benefit of photosynthesis research, this protein was the reaction center from the photosynthetic purple bacterium Rhodopseudomonas viridis. This research earned these three scientists the 1984 Nobel Prize in chemistry. [Pg.723]


See other pages where Electron in proteins is mentioned: [Pg.288]    [Pg.537]    [Pg.315]    [Pg.358]    [Pg.288]    [Pg.537]    [Pg.315]    [Pg.358]    [Pg.209]    [Pg.1201]    [Pg.1968]    [Pg.2502]    [Pg.2995]    [Pg.3049]    [Pg.16]    [Pg.67]    [Pg.136]    [Pg.501]    [Pg.506]    [Pg.178]    [Pg.206]    [Pg.224]    [Pg.19]    [Pg.393]    [Pg.394]    [Pg.395]    [Pg.396]    [Pg.398]    [Pg.399]    [Pg.402]    [Pg.404]    [Pg.87]    [Pg.376]    [Pg.182]    [Pg.722]    [Pg.157]   
See also in sourсe #XX -- [ Pg.7 ]




SEARCH



Absorption spectroscopy and electron transfer mechanism in proteins

Electron proteins

Electron transfer in blue copper proteins

Electron transfer in proteins

Kinetics of Electron Transfer in RC Protein from Rhodobacter sphaeroides

Kinetics of Electron Transfer in the Reaction Centre Proteins from Photosynthetic Bacteria

Photoinduced Electron Tunneling in Protein Molecules

Photoinduced electron transfer in proteins

Stephan S., Long-Range Electron Transfer in Peptides and Proteins

Studies of Ultrafast Electron Transfer in a Light-Activated Protein

© 2024 chempedia.info