Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfide electrolytes

Fig. 28. Chronoamperometry in free-electrolyte (sulfide). Comparison of experimental data with quantitative theory [38]. Fig. 28. Chronoamperometry in free-electrolyte (sulfide). Comparison of experimental data with quantitative theory [38].
Selenium is found in a few rare minerals such as crooksite and clausthalite. In years past it has been obtained from flue dusts remaining from processing copper sulfide ores, but the anode metal from electrolytic copper refineries now provide the source of most of the world s selenium. Selenium is recovered by roasting the muds with soda or sulfuric acid, or by smelting them with soda and niter. [Pg.96]

Hydroiodic acid, the colorless solution formed when hydrogen iodide gas dissolves in water, is prepared by reaction of iodine with hydrogen sulfide or hydrazine or by an electrolytic method. Typically commercial hydroiodic acid contains 40—55% HI. Hydroiodic acid is used in the preparation of iodides and many organic iodo compounds. [Pg.365]

Potassium removal is required because the presence of potassium during electrolysis reportedly promotes the formation of the a-Mn02 phase which is nonbattery active. Neutralization is continued to a pH of approximately 4.5, which results in the precipitation of additional trace elements and, along with the ore gangue, can be removed by filtration. Pinal purification of the electrolyte Hquor by the addition of sulfide salts results in the precipitation of all nonmanganese transition metals. [Pg.513]

Examples of similar processes are the decomposition of precipitated aluminum trHiydroxide to alumina, which is the feed for the electrolytic production of aluminum metal, and the drying of wet sulfide concentrates in preparation for flash roasting (see Aluminumand aluminum alloys). [Pg.164]

Metals less noble than copper, such as iron, nickel, and lead, dissolve from the anode. The lead precipitates as lead sulfate in the slimes. Other impurities such as arsenic, antimony, and bismuth remain partiy as insoluble compounds in the slimes and partiy as soluble complexes in the electrolyte. Precious metals, such as gold and silver, remain as metals in the anode slimes. The bulk of the slimes consist of particles of copper falling from the anode, and insoluble sulfides, selenides, or teUurides. These slimes are processed further for the recovery of the various constituents. Metals less noble than copper do not deposit but accumulate in solution. This requires periodic purification of the electrolyte to remove nickel sulfate, arsenic, and other impurities. [Pg.176]

The matte can be treated in different ways, depending on the copper content and on the desired product. In some cases, the copper content of the Bessemer matte is low enough to allow the material to be cast directly into sulfide anodes for electrolytic refining. Usually it is necessary first to separate the nickel and copper sulfides. The copper—nickel matte is cooled slowly for ca 4 d to faciUtate grain growth of mineral crystals of copper sulfide, nickel—sulfide, and a nickel—copper alloy. This matte is pulverized, the nickel and copper sulfides isolated by flotation, and the alloy extracted magnetically and refined electrolyticaHy. The nickel sulfide is cast into anodes for electrolysis or, more commonly, is roasted to nickel oxide and further reduced to metal for refining by electrolysis or by the carbonyl method. Alternatively, the nickel sulfide may be roasted to provide a nickel oxide sinter that is suitable for direct use by the steel industry. [Pg.3]

Silver sulfide, when pure, conducts electricity like a metal of high specific resistance, yet it has a zero temperature coefficient. This metallic conduction is beheved to result from a few silver ions existing in the divalent state, and thus providing free electrons to transport current. The use of silver sulfide as a soHd electrolyte in batteries has been described (57). [Pg.92]

Electrolytic reduction with a mercury or platinum electrode produces equimolar amounts of sulfide and sulfite ... [Pg.26]

The titanium sulfide is able to act as a lithium reservoir. On iatercalation with lithium, the titanium lattice expands from ca 570 to 620 pm as the iatercalation proceeds to completion on formation of TiI iS2. Small button cells have been developed, incorporating lithium perchlorate ia propyleae carboaate electrolyte, for use ia watches and pocket calculators (see Batteries). [Pg.133]

Sulfide Ores ores. In the Zairian ores, cobalt sulfide as carroUite is mixed with chalcopyrite and chalcocite [21112-20-9]. For processing, the ore is finely ground and the sulfides are separated by flotation (qv) using frothers. The resulting products are leached with dilute sulfuric acid to give a copper—cobalt concentrate that is then used as a charge in an electrolytic cell to remove the copper. Because the electrolyte becomes enriched with cobalt, solution from the copper circuit is added to maintain a desirable copper concentration level. After several more steps to remove copper, iron, and aluminum, the solution is treated with milk of lime to precipitate the cobalt as the hydroxide. [Pg.371]

Fig. 1. Recovery of copper from sulfide ore. The residue from electrolytic refining is processed to recover gold, silver, and selenium. Courtesy of Kennecott... Fig. 1. Recovery of copper from sulfide ore. The residue from electrolytic refining is processed to recover gold, silver, and selenium. Courtesy of Kennecott...
Hydrometallurigcal Processes. In hydrometaHurgical processes, metal values and by-products are recovered from aqueous solution by chemical or electrolytic processes. Values are solubilized by treating waste, ore, or concentrates. Leaching of copper ores in place by rain or natural streams and the subsequent recovery of copper from mnoff mine water as impure cement copper have been practiced since Roman times. Most hydrometaHurgical treatments have been appHed to ores or overburden in which the copper was present as oxide, mixed oxide—sulfide, or native copper. PyrometaHurgical and hydrometaHurgical processes are compared in Reference 34. [Pg.205]

The isolation of zinc, over 90% of which is from sulfide ores, depends on conventional physical concentration of the ore by sedimentation or flotation techniques. This is followed by roasting to produce the oxides the SO2 which is generated is used to produce sulfuric acid. The ZnO is then either treated electrolytically or smelted with coke. In the former case the zinc is leached from the crude ZnO with dil H2SO4, at which point cadmium is precipitated by the addition of zinc dust. The ZnS04 solution is then electrolysed and the metal deposited — in a state of 99.95% purity — on to aluminium cathodes. [Pg.1202]

For the corrosion process to proceed, the corrosion cell must contain an anode, a cathode, an electrolyte and an electronic conductor. When a properly prepared and conditioned mud is used, it causes preferential oil wetting on the metal. As the metal is completely enveloped and wet by an oil environment that is electrically nonconductive, corrosion does not occur. This is because the electric circuit of the corrosion cell is interrupted by the absence of an electrolyte. Excess calcium hydroxide [Ca(OH)j] is added as it reacts with hydrogen sulfide and carbon dioxide if they are present. The protective layer of oil film on the metal is not readily removed by the oil-wet solids as the fluid circulates through the hole. [Pg.1336]

Ni is found in many ores in combination with S, As Sb, the chief sources being the minerals chalcopyrite, pyrrhotite and pentlandite. Ni ores are of two types, sulfide and oxide, the former accounting for two-thirds of the world s consumption. Sulfide ores are refined by flotation and roasting to sintered Ni oxide, and either sold as such or reduced to metal, which is cast into anodes and refined electrolytically or by the carbonyl (Mond) process. Oxide ores are treated by hydrometallurgjcal refining, eg, leaching with ammonia. Much secondary Ni is recovered from scrap (Refs 6 7) 1... [Pg.208]

The ammonium polysulfide, (NH4)2SX (with x=2 to 6) is produced in an electrochemical cell where aqueous ammonium sulfide, (NH4)2S, solution is supplied as electrolyte. The cell comprises an anode and a gas diffusion carbon cathode over which gaseous 02 is supplied in contact with the electrolyte.11 The cell operated continuously at pressures up to 60 bar. The applied potential, UWc> was 0.01 to 5 V. Pronounced electrochemical promotion behaviour was observed at Uwc values as low as 0.02 V with a current 1=0.5 A. [Pg.482]


See other pages where Sulfide electrolytes is mentioned: [Pg.230]    [Pg.230]    [Pg.425]    [Pg.379]    [Pg.70]    [Pg.224]    [Pg.225]    [Pg.317]    [Pg.317]    [Pg.159]    [Pg.174]    [Pg.3]    [Pg.3]    [Pg.459]    [Pg.560]    [Pg.108]    [Pg.541]    [Pg.400]    [Pg.401]    [Pg.421]    [Pg.585]    [Pg.292]    [Pg.371]    [Pg.195]    [Pg.88]    [Pg.355]    [Pg.143]    [Pg.1114]    [Pg.1146]    [Pg.1147]    [Pg.172]    [Pg.232]    [Pg.1310]    [Pg.11]   
See also in sourсe #XX -- [ Pg.297 ]




SEARCH



Sulfide glass electrolytes

© 2024 chempedia.info