Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrolyte monovalent

At a finite distance, where the surface does not come into molecular contact, equilibrium is reached between electrodynamic attractive and electrostatic repulsive forces (secondary minimum). At smaller distance there is a net energy barrier. Once overcome, the combination of strong short-range electrostatic repulsive forces and van der Waals attractive forces leads to a deep primary minimum. Both the height of the barrier and secondary minimum depend on the ionic strength and electrostatic charges. The energy barrier is decreased in the presence of electrolytes (monovalent < divalent [Pg.355]

When the electrostatic stabilization of the emulsion is considered, the electrolytes (monovalent and divalent) added to the mixture are the major destabilizing species. The zeta potential of the emulsion particles is a function of the concentration and type of electrolytes present. Two types of emulsion particle-electrolyte (ions) interaction are proposed non-specific and specific adsorption.f H non-specific adsorption the ions are bound to the emulsion particle only by electrical double-layer interactions with the charged surface. As the electrolyte concentration is increased, the zeta potential asymptotes to zero. As the electrostatic repulsion decreases, a point can be found where the attractive van der Waals force is equal to the repulsive electrostatic force and flocculation of the emulsion occurs (Fig. 9A). This point is called the critical flocculation concentration (CFC). [Pg.4123]

Finally, nonspecific binding is considered, where electrolyte monovalent cations are allowed to adsorb at the Stem plane to compensate the gel charge [X ] =. / [R ],... [Pg.465]

The flow can be radial, that is, in or out through a hole in the center of one of the plates [75] the relationship between E and f (Eq. V-46) is independent of geometry. As an example, a streaming potential of 8 mV was measured for 2-cm-radius mica disks (one with a 3-mm exit hole) under an applied pressure of 20 cm H2 on QT M KCl at 21°C [75]. The i potentials of mica measured from the streaming potential correspond well to those obtained from force balance measurements (see Section V-6 and Chapter VI) for some univalent electrolytes however, important discrepancies arise for some monovalent and all multivalent ions. The streaming potential results generally support a single-site dissociation model for mica with Oo, Uff, and at defined by the surface site equilibrium [76]. [Pg.188]

Monovalent cations are good deflocculants for clay—water sHps and produce deflocculation by a cation exchange process, eg, Na" for Ca ". Low molecular weight polymer electrolytes and polyelectrolytes such as ammonium salts (see Ammonium compounds) are also good deflocculants for polar Hquids. Acids and bases can be used to control pH, surface charge, and the interparticle forces in most oxide ceramic—water suspensions. [Pg.307]

Making use of Eq. (25), the maximum conductivity of a solid electrolyte with monovalent mobile species is given by... [Pg.533]

Though solid electrolytes for multivalent ions offer the advantage of a larger charge transfer, their conductivities are much lower than those of monovalent ions at ambient temperature because of a higher activation enthalpy for the ionic motion... [Pg.533]

The nature of the Debye-Hiickel equation is that the activity coefficient of a salt depends only on the charges and the ionic strength. The effects, at least in the limit of low ionic strengths, are independent of the chemical identities of the constituents. Thus, one could use N(CH3)4C1, FeS04, or any strong electrolyte for this purpose. Actually, the best choices are those that will be inert chemically and least likely to engage in ionic associations. Therefore, monovalent ions are preferred. Anions like CFjSO, CIO, /7-CIC6H4SO3 are usually chosen, accompanied by alkali metal or similar cations. [Pg.209]

It is now admitted that the intrinsic viscosity in monovalent electrolyte (concentration Cs) is given by the folloving relation ... [Pg.27]

Not all ions are mobile within the ionic atmosphere of the polyion. A proportion are localized and site-bound-a concept apparently first suggested by Harris Rice (1954). Localized ion binding is equivalent to the formation of an ion-pair in simple electrolytes. Experimental evidence comes mainly from studies on monovalent counterions. [Pg.67]

Flocculating agents can be simple electrolytes that are capable of reducing the zeta potential of suspended charged particles. Examples include small concentrations (0.01-1%) of monovalent ions (e.g., sodium chloride, potassium chloride) and di- or trivalent ions (e.g., calcium salts, alums, sulfates, citrates or phosphates) [80-83], These salts are often used jointly in the formulations as pH buffers and flocculating agents. Controlled flocculation of suspensions can also be achieved by the addition of polymeric colloids or alteration of the pH of the preparation. [Pg.262]

Soils containing polyvalent cations having high valence and high electrolyte concentration have a high conductivity, whereas the soils containing monovalent cations, such as sodium, have a low k. Distilled water at the extreme end of the spectrum is free of electrolytes. In the Gouy-Chapman equation, the electrolyte concentration na would be 0. The denominator, therefore, would go to 0 and the T value to infinity. [Pg.1117]

The most powerful approach, at least in principle, is the measurement of the rate of the desired reaction as a function of potential and reagent concentration. In essence, any reaction can be written as a set of consecutive steps this is true even if the reaction is apparently a simple process such as the electrolyte deposition of a monovalent cation such as Ag +, since loss of water of hydration from the cation and the (possibly assisted) transport of atoms over the surface to appropriate lattice sites are clearly consecutive processes. [Pg.31]

If the species is neutral, its chemical potential p% can be varied by changing its concentration and hence its activity ay. dpt — RT d nat. In this case the determination of the surface excesses offers no difficulty in principle. However, if a species is charged, its concentration cannot be varied independently from that of a counterion, since the solution must be electrically neutral. To be specific, we consider the case of a 1-1 electrolyte composed of monovalent ions A and D+. The electro capillary equation then takes the form ... [Pg.222]

Our model for the adsorption of water on silicates was developed for a system with few if any interlayer cations. However, it strongly resembles the model proposed by Mamy (12.) for smectites with monovalent interlayer cations. The presence of divalent interlayer cations, as shown by studies of smectites and vermiculites, should result in a strong structuring of their primary hydration sphere and probably the next nearest neighbor water molecules as well. If the concentration of the divalent cations is low, then the water in interlayer space between the divalent cations will correspond to the present model. On the other hand, if the concentration of divalent cations approaches the number of ditrigonal sites, this model will not be applicable. Such a situation would only be found in concentrated electrolyte solutions. [Pg.50]

The nature of the problem in establishing a mechanistic model of the oxide-electrolyte interface, in which chemical and electrostatic energies are described explicitly, can be appreciated by consideration of the adsorption reaction depicted in Figure 2. The adsorption of a hydrogen ion from the bulk of a monovalent electrolyte is considered. The oxide-solution interface is divided conceptually into four regions the bulk oxide (not shown in the figure), the oxide surface at which the adsorption reaction takes place, the solution part of the double layer containing the counterions, and the bulk of solution. [Pg.57]

The charge at the diffuse layer plane is calculated from Gouy-Chapman-Stern-Grahame theory, which for a symmetrical monovalent electrolyte of concentration Cg is given by... [Pg.119]

First consider the system in which no diffusion potential is formed in the membrane. The membrane potential is then determined by the conditions at the membrane/aqueous electrolyte solution boundary. In the simplest situation, a salt of a monovalent ion-exchanger ion, anion A", with monovalent determinand cation J is dissolved in the membrane. In order for this system to be the basis for a usable ISE with Nemstian response to the determinand ion in a sufficiently broad activity interval, it is necessary that the distribution coefficient kj be... [Pg.36]

However, there are no known SB systems with Mg in aqueous solutions. The Mg anode s irreversibility in aqueous solutions is thought to be due, in part to the existence of monovalent Mg ions during the electrochemical discharge, in part to the selfcorrosion and film formation, and in part caused by other factors (136,140). All attempts to deposit this metal on the negative electrode from aqueous electrolytes have failed. It is claimed that the Mg cell with molten salt electrolyte, LiCl-KCl eut., is reversible (141) it operates at temperatures above the eutectic melting point, i.e. about 400°C. Small amounts of water might decrease the operating temperature. [Pg.287]

If we imagine that if coulombs of electricity be transported across a boundary separating two solutions of a monovalent electrolyte MX of concentrations Ci and Cg, the electrical work performed will be V F, where Fg is the difference of potential between the two solutions. [Pg.240]

Calculate the critical value of the surface potential of the colloid which will just give the rapid coagulation case illustrated in Figure 7.15. Assume that the aqueous solution contains lOmM monovalent electrolyte at 25 °C. Also assume that the Hamaker constant for this case has a value of 5 x 10 J. [Pg.150]


See other pages where Electrolyte monovalent is mentioned: [Pg.385]    [Pg.504]    [Pg.61]    [Pg.531]    [Pg.354]    [Pg.355]    [Pg.200]    [Pg.504]    [Pg.353]    [Pg.226]    [Pg.641]    [Pg.645]    [Pg.38]    [Pg.430]    [Pg.347]    [Pg.249]    [Pg.1315]    [Pg.221]    [Pg.73]    [Pg.220]    [Pg.133]    [Pg.76]    [Pg.101]    [Pg.335]    [Pg.20]    [Pg.242]    [Pg.242]    [Pg.100]    [Pg.333]   
See also in sourсe #XX -- [ Pg.350 ]




SEARCH



Monovalent

© 2024 chempedia.info